RAINFALL VARIABILITY PREDICTION MODEL IN KUALA TERENGGANU, MALAYSIA USING PRINCIPAL COMPONENT ANALYSIS AND MULTIPLE LINEAR REGRESSION

Authors

  • Yinqiu Wang Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
  • Mohd Saiful Samsudin Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia https://orcid.org/0000-0002-4777-1051
  • Shazlyn Millenana Saharuddin Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Malaysia
  • Weijian Chen Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
  • Demus Matheus Huang Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
  • Mohd Hafiidz Jaafar Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v88.23248

Keywords:

Climate Change, Principal Component Analysis, Multiple Linear Regression, Rainfall Prediction Model

Abstract

This study addresses the impact of climate change on Kuala Terengganu, Malaysia, focusing on rainfall variability prediction. As extreme weather events become more frequent, accurate climate forecasts are essential for effective disaster preparedness. The primary objective is to evaluate the effectiveness of Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) in predicting key climate indicators such as temperature, humidity, and precipitation. Using 2021 climate data, PCA was employed to identify significant variables influencing rainfall, which were then used in an MLR model to predict rainfall variability. The integrated PCA-MLR approach significantly improved prediction accuracy compared to MLR alone, identifying temperature, humidity, and wind speed as critical predictors. The study demonstrates that combining PCA and MLR enhances climate prediction accuracy, aiding better planning and response to climate challenges in Kuala Terengganu. This approach can improve disaster risk management and resilience. Future research should expand datasets and incorporate additional climate variables to refine predictive capabilities.

References

Mansouri, A., B. Aminnejad, and H. Ahmadi. 2018. Investigating the Effect of Climate Change on Inflow Runoff into the Karun-4 Dam Based on IPCC’s Fourth and Fifth Report. JWSS-Isfahan University of Technology. 22(2): 345–359.

Melillo, J. M., T. T. Richmond, and G. Yohe. 2014. Climate Change Impacts in the United States. In Third National Climate Assessment. 52: 150–174.

WMO. 2020. 2020 State of Climate Services: Risk Information and Early Warning Systems. WMO-No. 1252. https://library.wmo.int/idurl/4/57191.

NOAA. 2021. Record-Breaking Atlantic Hurricane Season Draws to an End, Dec. 2020. https://www.noaa.gov/media-release/record-breaking-atlantic-hurricane-season-draws-to-end.

NOAA National Centers for Environmental Information (NCEI). 2025. U.S. Billion-Dollar Weather and Climate Disasters. https://www.ncei.noaa.gov/access/billions/.

Komesaroff, P., and I. Kerridge. 2020. A Continent Aflame: Ethical Lessons from the Australian Bushfire Disaster. Springer.

Steven, A., et al. 2020. Coastal Development: Resilience, Restoration and Infrastructure Requirements. Washington, DC: World Resources Institute.

Bagheri, M., et al. 2021. “Application of Multi-Criteria Decision-Making Model and Expert Choice Software for Coastal City Vulnerability Evaluation.” Urban Science. 5(4): 84.

Gallina, V., S. Torresan, A. Zabeo, A. Critto, T. Glade, and A. Marcomini. 2020. A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones. Sustainability. 12(9): 3697.

Trenberth, K. E., and D. P. Stepaniak. 2001. Indices of El Niño Evolution. Journal of Climate. 14(8): 1697–1701.

McPhaden, M. J., S. E. Zebiak, and M. H. Glantz. 2006. ENSO as an Integrating Concept in Earth Science. Science. 314(5806): 1740–1745.

NOAA Climate.gov. 2025. Climate Change: Global Sea Level. https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level.

Wang, F., Y. Shen, J. Geng, and Q. Chen. 2024. Global Mean Sea Level Change Projections up to 2100 Using a Weighted Singular Spectrum Analysis. Journal of Marine Science and Engineering. 12(12): e2124. https://doi.org/10.3390/jmse12122124.

Nicholls, R. J., and A. Cazenave. 2010. Sea-Level Rise and Its Impact on Coastal Zones. Science. 328(5985): 1517–1520.

Bagheri, M., A. H. Nik, S. A. Shahid, M. F. Ramli, and H. Z. Abidin. 2021. Impacts of Future Sea-Level Rise under Global Warming Assessed from Tide Gauge Records: A Case Study of the East Coast Economic Region of Peninsular Malaysia. Land (Basel). 10(12): 1382.

Awang, N. A., and M. R. A. Hamid. 2013. Sea Level Rise in Malaysia. Sea Level Rise Adaptation Measures. Hydrolink. 2: 47–49.

Rezania, S., N. Z. A. Rahim, A. A. Z. Abidin, H. Dahalan, and M. A. Mohd. 2020. Technical Aspects of Biofuel Production from Different Sources in Malaysia—A Review. Processes. 8(8): 993.

Othman, W. Z., N. N. A. Tukimat, A. H. Azman, S. N. Rahmat, and B. Winarta. 2022. Analysis of Climate Variability and Trends in the Context of Climate Changes: Case Study in Terengganu. International Journal of Integrated Engineering. 14(9): 88–97.

Guo, R. 2021. Cross-Border Environmental Pollution and Human Health. In Cross–Border Resource Management, 4th ed. 291–337.

Van Eekelen, M. W., P. Droogers, R. P. Hoogeveen, R. Gupta, and S. Savenije. 2015. A Novel Approach to Estimate Direct and Indirect Water Withdrawals from Satellite Measurements: A Case Study from the Incomati Basin. Agriculture, Ecosystems & Environment. 200: 126–142.

Dhakal, A. S., and K. Sullivan. 2014. Shallow Groundwater Response to Rainfall on a Forested Headwater Catchment in Northern Coastal California: Implications of Topography, Rainfall, and Throughfall Intensities on Peak Pressure Head Generation. Hydrological Processes. 28(3): 446–463.

He, J., J. Wu, and J. Luo. 2020. Introduction to Climate Forecast System Version 1.0 of Nanjing University of Information Science and Technology. Transactions of Atmospheric Sciences. 43(1): 128–143.

Mu, M., W. Duan, D. Chen, and W. Yu. 2015. Target Observations for Improving Initialization of High-Impact Ocean-Atmospheric Environmental Events Forecasting. National Science Review. 2(2): 226–236.

Palmer, T. N. 2000. Predicting Uncertainty in Forecasts of Weather and Climate. Reports on Progress in Physics. 63(2): 71.

Luo, J.-J., et al. 2016. Current Status of Intraseasonal–Seasonal-to-Interannual Prediction of the Indo-Pacific Climate. In Indo-Pacific Climate Variability and Predictability. 63–107. Singapore: World Scientific.

Duan, W., and F. Zhou. 2013. Non-Linear Forcing Singular Vector of a Two-Dimensional Quasi-Geostrophic Model. Tellus A: Dynamic Meteorology and Oceanography. 65(1): 18452.

Mekanik, F., M. A. Imteaz, S. Gato-Trinidad, and A. Elmahdi. 2013. Multiple Regression and Artificial Neural Network for Long-Term Rainfall Forecasting Using Large Scale Climate Modes. Journal of Hydrology (Amsterdam). 503: 11–21.

Moradkhani, H., and M. Meier. 2010. Long-Lead Water Supply Forecast Using Large-Scale Climate Predictors and Independent Component Analysis. Journal of Hydrologic Engineering. 15(10): 744–762.

Fattorini, M., and C. Brandini. 2020. “Observation Strategies Based on Singular Value Decomposition for Ocean Analysis and Forecast. Water (Basel). 12(12): 3445.

Mazlum, N., and A. Ö. S. Mazlum. 1999. Interpretation of Water Quality Data by Principal Components Analysis. Turkish Journal of Engineering and Environmental Sciences. 23(1): 19–26.

Bagheri, M., et al. 2021. Land-Use Suitability Assessment Using Delphi and Analytical Hierarchy Process (D-AHP) Hybrid Model for Coastal City Management: Kuala Terengganu, Peninsular Malaysia. ISPRS International Journal of Geo-Information. 10(9). https://doi.org/10.3390/ijgi10090621

Yusof, K. M. K. K., S. S. Ismail, A. Azid, M. S. A. Sani, N. M. Isa, and M. Z. M. Zawawi. 2020. Variability on Particulate Matter and Meteorology Dataset During the Hazy Period in Eastern Region of Peninsular Malaysia. Data in Brief. 29: 105210.

Shafii, N. Z., et al. 2019. Application of Chemometrics Techniques to Solve Environmental Issues in Malaysia. Heliyon. 5(10).

Juahir, H., A. Retnam, M. A. Zali, and M. F. Hashim. 2011. A Comparison Between Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) for River Class Prediction at Klang River, Malaysia. In Contemporary Environmental Quality Management in Malaysia and Selected Countries. Serdang: Universiti Putra Malaysia Press.

Gazzaz, N. M., M. K. Yusoff, M. F. Ramli, A. Z. Aris, and H. Juahir. 2012. Characterization of Spatial Patterns in River Water Quality Using Chemometric Pattern Recognition Techniques. Marine Pollution Bulletin. 64(4): 688–698.

Kowalkowski, T., R. Zbytniewski, J. Szpejna, and B. Buszewski. 2006. Application of Chemometrics in River Water Classification. Water Research. 40(4): 744–752.

Simeonov, V., J. W. Einax, I. Stanimirova, and J. Kraft. 2002. Environmetric Modeling and Interpretation of River Water Monitoring Data. Analytical and Bioanalytical Chemistry. 374: 898–905.

Spitzer, M., J. Wildenhain, J. Rappsilber, and M. Tyers. 2014. BoxPlotR: A Web Tool for Generation of Box Plots. Nature Methods. 11(2): 121–122.

Samsudin, M. S., A. Azid, S. I. Khalit, M. S. A. Sani, and F. Lananan. 2019. Comparison of Prediction Model Using Spatial Discriminant Analysis for Marine Water Quality Index in Mangrove Estuarine Zones. Marine Pollution Bulletin. 141: 472–481.

Pearson, K. 1901. LIII. On Lines and Planes of Closest Fit to Systems of Points in Space.”The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 2(11): 559–572. https://doi.org/10.1080/14786440109462720.

Jolliffe, I. T. 2002. Principal Component Analysis for Special Types of Data. Springer.

Adeen, N., M. Abdulazeez, and D. Zeebaree. 2020. Systematic Review of Unsupervised Genomic Clustering Algorithms Techniques for High Dimensional Datasets. Technological Reports of Kansai University. 62(3): 355–374.

Hasan, B. M. S., and A. M. Abdulazeez. 2021. A Review of Principal Component Analysis Algorithm for Dimensionality Reduction. Journal of Soft Computing and Data Mining. 2(1): 20–30.

Hasan, B. M. S., and A. M. Abdulazeez. 2021. A Review of Principal Component Analysis Algorithm for Dimensionality Reduction. Journal of Soft Computing and Data Mining. 2(1): 20–30.

Zhuang, X., Z. Yang, and D. Cordes. 2020. A Technical Review of Canonical Correlation Analysis for Neuroscience Applications. Human Brain Mapping. 41(13): 3807–3833.

Carreras Simó, M., and G. Coenders. 2020. Principal Component Analysis of Financial Statements: A Compositional Approach = Análisis en Componentes Principales de los Estados Financieros: Un Enfoque Composicional. Revista de Métodos Cuantitativos para la Economía y la Empresa. 29: 18–37.

Wang, M., L. Song, K. Sun, and Z. Jia. 2020. F-2D-QPCA: A Quaternion Principal Component Analysis Method for Color Face Recognition. IEEE Access. 8: 217437–217446.

Karpuzcu, M. E., D. Fairbairn, W. A. Arnold, B. L. Barber, E. Kaufenberg, W. C. Koskinen, P. J. Novak, P. J. Rice, and D. L. Swackhamer. 2014. Identifying Sources of Emerging Organic Contaminants in a Mixed Use Watershed Using Principal Components Analysis. Environmental Science: Processes & Impacts. 16(10): 2390–2399. https://doi.org/10.1039/C4EM00324A.

Kim, J.-O., and C. W. Mueller. 1978. Introduction to Factor Analysis: What It Is and How to Do It. No. 13. Sage.

Vega, M., R. Pardo, E. Barrado, and L. Debán. 1998. Assessment of Seasonal and Polluting Effects on the Quality of River Water by Exploratory Data Analysis. Water Research. 32(12): 3581–3592.

Liu, C.-W., K.-H. Lin, and Y.-M. Kuo. 2003. Application of Factor Analysis in the Assessment of Groundwater Quality in a Blackfoot Disease Area in Taiwan. Science of the Total Environment. 313(1–3): 77–89.

Schober, P., C. Boer, and L. A. Schwarte. 2018. Correlation Coefficients: Appropriate Use and Interpretation. Anesthesia & Analgesia. 126(5): 1763–1768.

Samsudin, M. S., A. Azid, S. I. Khalit, A. S. M. Saudi, and M. A. Zaudi. 2017. River Water Quality Assessment Using APCS-MLR and Statistical Process Control in Johor River Basin, Malaysia. International Journal of Advanced and Applied Sciences. 4(8): 84–97.

Tabachnick, B. G., and L. S. Fidell. 1983. Using Multivariate Statistics. New York: HarperCollins Publishers.

Büyüköztürk, Ş. 2002. Sosyal Bilimler için Veri Analizi El Kitabı. Ankara: Pegem Yayıncılık.

Yusof, K. M. K. K., A. Azid, M. S. A. Sani, M. S. Samsudin, S. N. S. Muhammad Amin, N. L. A. Rani, and M. A. Jamalani. 2019. The Evaluation on Artificial Neural Networks (ANN) and Multiple Linear Regressions (MLR) Models over Particulate Matter (PM10) Variability during Haze and Non Haze Episodes: A Decade Case Study. Malaysian Journal of Fundamental and Applied Sciences. 15(2): 164–172. https://doi.org/10.11113/mjfas.v15n2.1004.

Özdemir, U., and S. Taner. 2014. Impacts of Meteorological Factors on PM10: Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR) Approaches. Environmental Forensics. 15(4): 329–336. https://doi.org/10.1080/15275922.2014.950133.

Johnson, R. A., and G. K. Bhattacharyya. 2019. Statistics: Principles and Methods. 8th ed. Hoboken, NJ: John Wiley & Sons.

Juahir, H., M. Z. Yusoff, S. M. Zain, A. Z. Aris, M. K. Yusoff, M. F. Ramli, and N. A. Mohd. 2011. Spatial Water Quality Assessment of Langat River Basin (Malaysia) Using Environmetric Techniques. Environmental Monitoring and Assessment 173: 625–641. https://doi.org/10.1007/s10661-010-1411-x.

Suhaila, J., S. M. Deni, W. Z. Wan Zin, and A. A. Jemain. 2010. Spatial Patterns and Trends of Daily Rainfall Regime in Peninsular Malaysia during the Southwest and Northeast Monsoons: 1975–2004. Meteorology and Atmospheric Physics. 110: 1–18. https://doi.org/10.1007/s00703-010-0092-6.

Fadzil, M., M. A. Mohd Akhir, and Y. J. Chuen. 2011. Seasonal Variation of Water Characteristics during Inter-Monsoon along the East Coast of Johor. Journal of Sustainability Science and Management. 6(2): 206–214.

Karlis, D., G. Saporta, and A. Spinakis. 2003. A Simple Rule for the Selection of Principal Components. Communications in Statistics—Theory and Methods. 32(3): 643–666. https://doi.org/10.1081/STA-120018556

Holton, J. R. 1992. An Introduction to Dynamic Meteorology. International Geophysics Series, Vol. 48. San Diego, CA: Academic Press.

Umoh, A. A., A. O. Akpan, and B. B. Jacob. 2013. Rainfall and Relative Humidity Occurrence Patterns in Uyo Metropolis, Akwa Ibom State, South-South Nigeria. IOSR Journal of Engineering. http://www.iosrjen.org.

Mawonike, R., and G. Mandonga. 2017. The Effect of Temperature and Relative Humidity on Rainfall in Gokwe Region, Zimbabwe: A Factorial Design Perspective. International Journal of Multidisciplinary Academic Research. 5(2). http://www.multidisciplinaryjournals.com.

Spiridonov, V., and M. Ćurić. 2021. Atmospheric Pressure and Wind. In Fundamentals of Meteorology. 87–114. Cham: Springer. https://doi.org/10.1007/978-3-030-52655-9_5.

Wooten, R. D. 2011. Statistical Analysis of the Relationship between Wind Speed, Pressure and Temperature. Journal of Applied Sciences. 11(15): 2712–2722. https://doi.org/10.3923/jas.2011.2712.2722.

Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae. 2014. Global Observations of Aerosol–Cloud–Precipitation–Climate Interactions. Reviews of Geophysics. 52(4): 750–808. https://doi.org/10.1002/2013RG000441.

Bretherton, C. S., M. E. Peters, and L. E. Back. 2004. Relationships between Water Vapor Path and Precipitation over the Tropical Oceans. Journal of Climate. 17(7): 1517–1528. https://doi.org/10.1175/1520-0442(2004)017.

Zhu, L., X. Chen, and L. Bai. 2020. Relative Roles of Low-Level Wind Speed and Moisture in the Diurnal Cycle of Rainfall over a Tropical Island under Monsoonal Flows. Geophysical Research Letters. 47(8): e2020GL087467. https://doi.org/10.1029/2020GL087467.

Folkins, I., T. Mitovski, and J. R. Pierce. 2014. A Simple Way to Improve the Diurnal Cycle in Convective Rainfall over Land in Climate Models. Journal of Geophysical Research: Atmospheres. 119(5): 2113–2130. https://doi.org/10.1002/2013JD020149.

Back, L. E., and C. S. Bretherton. 2005. The Relationship between Wind Speed and Precipitation in the Pacific ITCZ. Journal of Climate. 18(20): 4317–4328. https://doi.org/10.1175/JCLI3519.1.

Wu, J., J. Zha, D. Zhao, and Q. Yang. 2018. Changes in Terrestrial Near-Surface Wind Speed and Their Possible Causes: An Overview. Climate Dynamics. 51(5): 2039–2078. https://doi.org/10.1007/s00382-017-3977-6.

Gore, R. D., and B. W. Gawali. 2023. Analysis of Weather Parameters Using Machine Learning. In Proceedings of the International Conference on Artificial Intelligence and Smart Systems. 569–589. Atlantis Press. https://doi.org/10.2991/978-94-6463-196-8_44.

Siloko, I. U., and O. O. Uddin. 2023. A Statistical Study of Wind Speed and Its Connectivity with Relative Humidity and Temperature in Ughelli, Delta State, Nigeria. Science World Journal. 18(3): 404–413. https://doi.org/10.4314/swj.v18i3.13,

Emekwuru, N., and O. Ejohwomu. 2023. Temperature, Humidity and Air Pollution Relationships during a Period of Rainy and Dry Seasons in Lagos, West Africa. Climate. 11(5): 113. https://doi.org/10.3390/cli11050113.

Lawrence, Mark G. 2005. The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications. Bulletin of the American Meteorological Society. 86(2): 225–234. https://doi.org/10.1175/BAMS-86-2-225.

Speer, Michael S., Paul Wiles, and Acacia Pepler. 2009. Low Pressure Systems off the New South Wales Coast and Associated Hazardous Weather: Establishment of a Database. Australian Meteorological and Oceanographic Journal. 58(1): 29–39.

Mohr, Matthias. 2004. Problems with the Mean Sea Level Pressure Field over the Western United States. Monthly Weather Review. 132(8): 1952–1965. https://doi.org/10.1175/1520-0493(2004)132<1952:PWTMSL>2.0.CO;2.

Randel, William J., and Eric J. Jensen. 2013. Physical Processes in the Tropical Tropopause Layer and Their Roles in a Changing Climate. Nature Geoscience. 6(3): 169–176. https://doi.org/10.1038/ngeo1733.

Henry, Robert C., Clifford W. Lewis, Philip K. Hopke, and Henry J. Williamson. 1984. Review of Receptor Model Fundamentals. Atmospheric Environment. 18(8): 1507–1515. https://doi.org/10.1016/0004-6981(84)90375-5.

Azid, Azman, et al. 2018. Air Quality Modelling Using Chemometric Techniques. Journal of Fundamental and Applied Sciences. 9(2S): 443–459. https://doi.org/10.4314/jfas.v9i2s.30.

Pai, Tzu-Yuan, et al. 2010. Predicting Hourly Ozone Concentration in Dali Area of Taichung County Based on Multiple Linear Regression Method. International Journal of Applied Science and Engineering. 7(2): 127–132.

Diez, David M., Christopher D. Barr, and Mine Çetinkaya-Rundel. 2012. OpenIntro Statistics. Boston, MA: OpenIntro.

L. P., and S. S. D. 2023. A Novel Model for Rainfall Prediction Using Hybrid Stochastic-Based Bayesian Optimization Algorithm. Environmental Science and Pollution Research. 30: 92555–92567. https://doi.org/10.1007/s11356-023-28734-z.

Dockès, Jérémie, Gaël Varoquaux, and Jean-Baptiste Poline. 2021. Preventing Dataset Shift from Breaking Machine-Learning Biomarkers. GigaScience. 10(9): giab055. https://doi.org/10.1093/gigascience/giab055.

Downloads

Published

2025-12-23

Issue

Section

Science and Engineering