Dynamic Hysteresis Based Modeling Of Piezoelectric Actuators

Authors

  • Marwan Nafea M. Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Z. Mohamed Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Auwalu M. Abdullahi Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. R. Ahmad Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • A. R. Husain Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v67.2834

Keywords:

Piezoelectric actuator, hysteresis modeling, Bouc-Wen model

Abstract

Piezoelectric actuators are popularly applied as actuators in high precision systems due to their small displacement resolution, fast response and simple construction. However, the hysteresis nonlinear behavior limits the dynamic modeling and tracking control of piezoelectric actuators. This paper studies a dynamic model of a moving stage driven by piezoelectric stack actuator. The Bouc-Wen model is introduced and analyzed to express the nonlinear hysteresis term. Two triangular actuating voltages with frequency of 1 Hz and amplitudes of 80 V and 90 V are applied to drive the piezoelectric stack actuator. The results demonstrate the existence of the hysteresis phenomenon between the input voltage and the output displacement of the piezoelectric stack actuator, and validate the correctness of the model.

References

Goldfarb, M., & Celanovic, N. 1997. Modeling Piezoelectric Stack Actuators for Control Of Micromanipulation. Control Systems, IEEE. 17(3): 69–79.

Simu, U., & Johansson, S. 2002. Evaluation of a Monolithic Piezoelectric Drive Unit for a Miniature Robot. Sensors and Actuators A: Physical. 101(1): 175–184.

Viswamurthy, S. R., & Ganguli, R. 2007. Modeling and Compensation of Piezoceramic Actuator Hysteresis for Helicopter Vibration Control. Sensors and Actuators A: Physical. 135(2): 801–810.

Caruso, G., Galeani, S., & Menini, L. 2003. Active Vibration Control of an Elastic Plate Using Multiple Piezoelectric Sensors and Actuators. Simulation Modelling Practice and Theory. 11(5): 403–419.

Croft, D., Shedd, G., & Devasia, S. 2000. Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application. In American Control Conference, 2000. Proceedings of the 2000 IEEE. 3: 2123–2128).

Sofla, M. S., Rezaei, S. M., Zareinejad, M., & Saadat, M. 2010. Hysteresis-observer Based Robust Tracking Control of Piezoelectric Actuators. In American Control Conference (ACC), 2010 IEEE. 4187–4192.

Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society. 1987. An American National Standard: IEEE Standard on Piezoelectricity, The Institute of Electrical and Electronics Engineers, ANSUIEEE Std. New York. 176–1987.

Gu, G., & Zhu, L. 2010. High-speed Tracking Control of Piezoelectric Actuators Using an Ellipse-based Hysteresis Model. Review of Scientific Instruments. 81(8): 085104-085104.

Wen, Y. K. 1976. Method for Random Vibration of Hysteretic Systems. Journal of the Engineering Mechanics Division. 102(2): 249–263.

Coleman, B. D., & Hodgdon, M. L. 1986. A Constitutive Relation for Rate-independent Hysteresis in Ferromagnetically Soft Materials. International Journal of Engineering Science. 24(6): 897–919.

Ge, P., & Jouaneh, M. 1995. Modeling Hysteresis in Piezoceramic Actuators. Precision Engineering. 17(3): 211–221.

Jiang, H., Ji, H., Qiu, J., & Chen, Y. 2010. A modified prandtl-ishlinskii Model for Modeling Asymmetric Hysteresis of Piezoelectric Actuators. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on. 57(5): 1200–1210.

Ismail, M., Ikhouane, F., & Rodellar, J. 2009. The Hysteresis Bouc-Wen Model, a Survey. Archives of Computational Methods in Engineering. 16(2): 161–188.

Baber, T. T., & Noori, M. N. 1986. Modeling General Hysteresis Behavior and Random Vibration Application. Journal of Vibration Acoustics Stress and Reliability in Design. 108: 411.

Bouc, R. 1971. Modèle mathématique d’hystérésis. Acustica. 21:16–25. (A mathematical model for hysteresis).

Ceravolo, R., Demarie, G. V., & Erlicher, S. 2007. Instantaneous Identification of Bouc-Wen-Type Hysteretic Systems from Seismic Response Data. Key Engineering Materials. 347: 331–338.

Ikhouane, F., Rodellar, J., & Hurtado, J. E. 2006. Analytical Characterization of Hysteresis Loops Described by the Bouc-Wen model. Mechanics of Advanced Materials and Structures. 13(6): 463–472.

Ikhouane, F., Mañosa, V., & Rodellar, J. 2007. Dynamic Properties of the Hysteretic Bouc-Wen Model. Systems & Control Letters. 56(3): 197–205.

Ye, M., & Wang, X. 2007. Parameter Estimation of the Bouc–Wen Hysteresis Model Using Particle Swarm Optimization. Smart Materials and Structures. 16(6): 2341.

Song, J., & Der Kiureghian, A. 2006. Generalized Bouc–Wen Model for Highly Asymmetric Hysteresis. Journal of Engineering Mechanics. 132(6): 610–618.

Chang, K. M. 2009. December. Model Reference Adaptive Control For A Precision Positioning System. In Control and Automation, 2009. ICCA 2009. IEEE International Conference on. IEEE. 1086–1091

Ray, T., & Reinhorn, A. M. 2012. Enhanced Smooth Hysteretic Model with Degrading Properties. Journal of Structural Engineering.

Ikhouane, F., Rodellar, J., & Rodriguez, A. 2005. May. Analytical Study of the Influence of the Normalized Bouc-Wen Model Parameters on Hysteresis Loops. In Smart Structures and Materials International Society for Optics and Photonics. 535–542.

Low, T. S., & Guo, W. 1995. Modeling of a Three-Layer Piezoelectric Bimorph Beam with Hysteresis. Microelectromechanical Systems. Journal of. 4(4): 230–237.

Ha, J. L., Kung, Y. S., Fung, R. F., & Hsien, S. C. 2006. A Comparison of Fitness Functions for the Identification of a Piezoelectric Hysteretic Actuator Based on the Real-coded Genetic Algorithm. Sensors and Actuators A: Physical. 132(2): 643–650.

Sues, R. H., Mau, S. T., & Wen, Y. K. 1988. Systems Identification of Degrading Hysteretic Restoring Forces. Journal of Engineering Mechanics. 114(5): 833–846.

Jeen-Shang, L., & Yigong, Z. 1994. Nonlinear Structural Identification Using Extended Kalman Filter. Computers & Structures. 52(4): 757–764.

Peng, J. Y., & Chen, X. B. 2012. Novel Models for One-sided Hysteresis of Piezoelectric Actuators. Mechatronics. 22(6): 757–765.

Downloads

Published

2014-03-30

Issue

Section

Science and Engineering

How to Cite

Dynamic Hysteresis Based Modeling Of Piezoelectric Actuators. (2014). Jurnal Teknologi (Sciences & Engineering), 67(5). https://doi.org/10.11113/jt.v67.2834