EXPERIMENTAL ANALYSIS OF HOMEOSTATIC-INSPIRED MOTION CONTROLLER FOR A HYBRID-DRIVEN AUTONOMOUS UNDERWATER GLIDER

Authors

  • Khalid Isa Embedded Computing System Research Focus Group (EmbCoS), Department of Computer Engineering, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia
  • M. R. Arshad Underwater Control and Robotics Group (UCRG), School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia(USM), 14300 Nibong Tebal, Pulau Pinang, Malaysia

DOI:

https://doi.org/10.11113/jt.v74.4808

Keywords:

Homeostatic controller, hybrid-driven underwater glider, homeostasis, motion control

Abstract

This paper presents a homeostatic controller algorithm and its performance, which controls motion of a hybrid-driven underwater glider. The homeostatic controller is inspired from a biological process known as homeostasis, which maintains a stable state in the face of massively dynamics conditions. The objective is to obtain a better control performance of the glider motion control system with a presence of disturbance, which is the water current. The algorithm was simulated by using MatlabTM. According to the simulation results, in order to achieve the desired pitch angle, the homeostatic controller was able to optimize the glider’s ballast mass and distance of the glider’s sliding mass by reducing the ballast mass up to 17.7% and shortening the sliding mass distance up to 53.7% when compared with the linear-quadratic regulator (LQR) and model predictive control (MPC). Furthermore, validation analyses of the homeostatic controller performance between the simulation and experimental results have shown very satisfactory performance.  

References

Webb, D. C., Simonetti, P. J. and Jones. C. P. 2001. SLOCUM: An Underwater Glider Propelled by Environment Energy. IEEE Journal of Oceanic Engineering. 26(4): 447-452.

Sherman, J. Davis, R. E. Owens W. B. and Valdes. J. The Autonomous Underwater Glider "Spray". IEEE Journal of Oceanic Engineering. 26(4): 437-446.

Eriksen, C. C. Osse, T. J. Light, R. D. Wen, T. Lehman, T. W. Sabin, P. L. Ballard, J. W. and Chiodi. A. M. 2001. Seaglider: A Long Range Autonomous Underwater Vehicle for Oceanographic Research. IEEE Journal of Oceanic Engineering. 26(4): 424-436.

Osse, T. J. and Eriksen. C. C. 2007. The Deepglider: A Full Ocean Depth Glider for Oceanographic Research. In Oceans 2007. 1-12.

Stommel, H. The Slocum Mission. In Oceanography. 2: 22-25.

Bachmayer, R. Graver, J. G. Leonard. N. E. 2003. Glider Control: A Close Look Into the Current Glider Controller Structure and Future Developments. In Oceans 2003. 951-954.

Seo, D. C. Jo, G. Choi. H. S. 2008. Pitching control Simulations of an Underwater Glider Using CFD Analysis. In Oceans 2008.1-5.

Mahmoudian, N. Woolsey. C. 2008. Underwater Glider Motion Control. In 47th IEEE Conference on Decision and Control. 552-557.

Leonard, N. E. Graver J. G. 2001. Model Based Feedback Control of Autonomous Underwater Gliders. IEEE Journal of Oceanic Engineering. 26(4): 633-645.

Lei, K. Yuwen, Z. Hui, Y. Zhikun. C. 2008. MATLAB-based Simulation of Buoyancy-driven Underwater Glider Motion. Journal Ocean University of China. 7(1): 133-188.

Wang, Y. Zhang, H. Wang. S. 2009. Trajectory Control Strategies for the Underwater Glider. In Int. Conference on Measuring Technology and Mechatronics Automation. 918-921.

Jun, B. H. Park, J. Y. Lee, F. Y. Lee, P. M. Lee, C. M. Kim, K. Lim, Y. K. Oh. J. H. 2009. Development of the AUV 'ISiMI' and Free Running Test in an Ocean Engineering Basin. Journal of Ocean Engineering. 36(1): 2-14.

Yang, H. Ma. J. 2010. Sliding Mode Tracking Control of an Autonomous Underwater Glider. In International Conference on Computer Application and System Modeling (ICCASM 2010). 555-558.

Amin, R. Khayyat, A. A. Osgouie, K. G. 2010. Neural Networks Modeling of Autonomous Underwater Vehicle. In 2010 IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications (MESA). 14-19.

Budiyono. A. 2009. Advances in Unmanned Underwater Vehicles Technologies: Modeling, Control and Guidance Perspectives. Indian Journal of Geo-Marine Sciences. 38(3): 282-295.

Yuh. J. 2000. Design and Control of Autonomous Underwater Robots: A Survey. Autonomous Robots. 8(1): 7-24.

Moioli, R. C. Vargas, P. A. Zuben, F. J. V. Husbands. P. 2008. Evolving an Artificial Homeostatic System. In SBIA Joint Conference (SBIA). 278-88.

Moioli, R. C. Vargas, P. A. Zuben, F. J. V. Husbands. P. 2008. Towards The Evolution of an Artificial Homeostatic System. In IEEE Congress on Evolutionary Computation (CEC). 4024-31.

Isa, K. Arshad, M. R. Ishak. S. 2014. A Hybrid-driven Underwater Glider Model, Hydrodynamics Estimation, and an Analysis of the Motion Control. Ocean Engineering. 81(0): 111-129.

Ezequiel A. Di Paolo. 2000. Homeostatic Adaptation to Inversion of the Visual Field and Other Sensorimotor Disruptions. In From Animals to Animals: Proceedings of the 6th International Conference on the Simulation of Adaptive Behavior. 440-449.

Hoinville, T., Henaff, P. 2004. Comparative Study of Two Homeostatic Mechanisms in Evolved Neural Controllers for Legged Locomotion. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004). 2624-2629.

Vargas, P., Moioli, R., de Castro, L. N., Timmis, J., Neal, M., Von Zuben, F. J. 2005. Artificial Homeostatic System: A Novel Approach. In M. S. Capcarrere, A. A. Freitas, P. J. Bentley, C. G. Johnson, J. Timmis (Eds.). Proceedings of Advances in Artifical Life. 3630: 754-764.

Moioli, R. C., Vargas, P. A., Von Zuben, F. J., Husbands, P. 2008. Evolving an Artificial Homeostatic System. In G. Zaverucha & A. LoureiroDaCosta (Eds.). Advances in Artificial Intelligence-Sbia 2008, Proceedings. 278-288.

Moioli, R. C., Vargas, P. A., Von Zuben, F. J., & Husbands, P. 2008. Towards the Evolution of an Artificial Homeostatic System. In IEEE Congress on Evolutionary Computation (CEC 2008). IEEE World Congress on Computational Intelligence. 4023-4030.

Neal, M., Timmis, J. 2003. Timidity: A Useful Mechanism for Robot Control? Informatica. 27(4): 197-204.

Timmis, J, Neal, M., Thorniley, J. 2009. An Adaptive Neuro-Endocrine System for Robotic Systems. In IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RIISS ’09). 129-136.

Soloway, D., Haley, P. J. 1996. Neural generalized predictive control. In Proceedings of the 1996 IEEE International Symposium on Intelligent Control. 277-282.

Budiyono, A. 2011. Model Predictive Control for Autonomous Underwater Vehicle. Indian Journal of Geo-Marine Sciences. 40(2): 191-199.

Timmis, J. Neal, M. Thorniley. J. 2009. An Adaptive Neuro-Endocrine System for Robotic System. In IEEE Workshop on Robotic Intelligence in Informationally Structured Space, part of IEEE Workshops on Computational Intelligence. 129-136.

De Castro, L. N., Von Zuben, F. J. 2000. The Clonal Selection Algorithm with Engineering Applications. In Proceedings of GECCO. 36-42.

Downloads

Published

2015-06-21

How to Cite

EXPERIMENTAL ANALYSIS OF HOMEOSTATIC-INSPIRED MOTION CONTROLLER FOR A HYBRID-DRIVEN AUTONOMOUS UNDERWATER GLIDER. (2015). Jurnal Teknologi (Sciences & Engineering), 74(9). https://doi.org/10.11113/jt.v74.4808