BLOOD GLUCOSE LEVEL AND LIPID PROFILE OF ALLOXAN–INDUCED DIABETIC RATS TREATED WITH NA-ALGINATE FROM SEAWEED Turbinaria ornata (Turner) J.Agardh

Authors

  • Amir Husni Aquaculture Study Program Department of Fisheries Faculty of Agriculture Universitas Gadjah Mada, Jalan Flora Gedung A4 Bulaksumur, Yogyakarta 55281, Indonesia
  • Setyaning Pawestri Fish Processsing Technology Study Program Department of Fisheries Faculty of Agriculture Universitas Gadjah Mada, Jalan Flora Gedung A4 Bulaksumur, Yogyakarta 55281, Indonesia
  • Alim Isnansetyo Aquaculture Study Program Department of Fisheries Faculty of Agriculture Universitas Gadjah Mada, Jalan Flora Gedung A4 Bulaksumur, Yogyakarta 55281, Indonesia

DOI:

https://doi.org/10.11113/jt.v78.8145

Keywords:

Blood glucose, diabetes, lipid profiles, Na-alginate, seaweed

Abstract

Diabetes mellitus (DM) is a metabolic disorder due to insulin deficiency, insulin resistance or inability of β-cells of pancreas to produce insulin. This study was aimed to evaluate the effects of Na-alginate from Turbinaria ornata (Turner) J.Agardh on glucose level and lipid profile in alloxan-induced diabetic rats. Na-alginate was extracted from T. ornata then analyzed by TLC and FTIR. In vivo test was performed on alloxan monohydrate induced diabetic rats. In vivo parameters evaluated were body weight, blood glucose and lipid profiles (total cholesterol, HDL-c, LDL-c, and triglyceride). In vivo test was conducted by a complete randomized design with six treatments, 0.5 % CMC-Na, glibenclamide 5 mg kg–1, Na-alginate 200 mg kg–1, Na-alginate 400 mg kg–1, Na-alginate 600 mg kg–1, and NaCl 0.9 % per each five replications. The results showed that Na-alginate at 600 mg·kg–1 increased weight of rat significantly comparing to normal control. Na-alginate 600 mg kg–1also lowered preprandial and postprandial glucose better than other doses. Increasing dose of Na-alginate lowered total cholesterol, increased HDL-c, and lowered LDL-c. The higher dose of alginate gave greater effect on diabetic rats. However, Na-alginate did not affect the triglyceride.

References

American Diet Association (ADA). 2012. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 35: 6471.

Boden, G. and M. Laakso. 2004. Lipids and Glucose in Type 2 Diabetes. Diabetes Care. 27: 22532259.

International Diabetes Federation (IDF). 2013. IDF Diabetes Atlas. [Online]. From: www.idf.org/diabetesatlas. [Accessed on 16 February 2014].

Gamal, E. 2010. Biological Importance of Marine Algae. Saudy Pharmacy Journal. 18: 1–25.

Nwosu, F., J. Morris, V. A. Lund, D. Stewart, H. A. Ross and G. J. McDougall. 2011. Anti-Proliferative and Potential Anti-diabetic Effects of Phenolic-rich Extracts from Edible Marine Algae. Food Chemistry. 126: 10061012.

Husni, A., R. Wijayanti and Ustadi. 2014. Inhibitory Activity of α-Amylase and α-Glucosidase by Padina pavonica Extracts. Journal of Biological Sciences. 14: 515520.

Firdaus, M., M. Astawan, D. Muchtadi, T. Wresdiyati, S. Waspadji and S. S. Karyono. 2010. Prevention of Endothelial Dysfunction in Streptozotocin-Induced Diabetic Rats by Sargassum echinocarpum Extract. Medical Journal of Indonesia. 19: 3235.

Rasyid, A. 2009. Perbandingan Kualitas Natrium Alginat Beberapa Jenis Alga Coklat [Comparation of Na-Alginate Quality from Brown Algae Species]. Oseanologi dan Limnologi di Indonesia. 35: 5764. [Bahasa Indonesia].

Association of Official Analytical Chemistry (AOAC). 2005. Official Methods of Analysis of the Association of Official Analytical Chemist. Arlington: AOAC Inc.

Skalska-Kamińska, A., G. Matysik, M. Wójciak-Kosior, H. Donica and I. Sowa. 2009. Thin-Layer Chromatography of Sugars in Plant Material. Annales Universitatis Mariae Curie-Skolodowska Lublin-Polonia. 12: 1724.

Dahech, I., K. S. Belghith, K. Hamden, A. Feki, H. Belghith and H. Mejdoub. 2011. Oral Administration of Levan Polysaccharide Reduces the Alloxan–Induced Oxidative Stress in Rats. International Journal of Biological Macromolecules. 49: 942947.

DiaSys Diagnostic SystemsGmbH. 2009. Glucose GOD FS. Germany.

Andrikopoulos, S., A. R. Blair, N. Deluca, B. C. Fam and J. Proietto. 2008. Evaluating the Glucose Tolerance Test in Mice. American Journal of Physiology–Endocrinology and Metabolism. 295: E1323E1332.

Muniyappa, R., S. Lee, H. Chen and M. J. Quon. 2008. Current Approaches for Assessing Insulin Sensitivity and Resistance In Vivo: Advantages, Limitations, and Appropriate Usage. American Journal of Physiology-Endocrinology and Metabolism. 294: E15–E26.

DiaSys Diagnostic SystemsGmbH. 2012. Cholesterol FS. Germany.

FAO. 1997. Sodium Alginate. Prepared at the 49th JECFA (1997). FNP 52 Add 5.

McHugh, D. J. 2003. A Guide to the Seaweed Industry. Roma: Food and Agriculture Organization of The United Nations.

Spangeberg, B., C. F. Poole and C. Weins. 2011. Quantitative Thin-Layer Chromatography Apractical Survey. [Online]. From: http://www.springer.com/us/book/9783642107276. [Accessed on 17 March 2014].

Leal, D., B. Matsuhiro, M. Rossi and F. Caruso. 2008. FT-IR Spectra of Alginic Acid Block Fractions in Three Species of Brown Seaweeds. Carbohydrate Research. 343: 308316.

Campos-Vallette, M. M., N. P. Chandía, E. Clavijo, D. Leal, B. Matsuhiro, I. O. Osorio-Rom´an and S. Torres. 2010. Characterization of Sodium Alginate and Its Block Fractions by Surface-Enhanced Raman Spectroscopy. Journal of Raman Spectroscopy. 41: 758–763.

Chandalia, M., A. Garg, D. Lutjohanh, K. von-Bergmann, S. M. Grundy and L. J. Brinkley. 2000. Beneficial Effects of High Dietary Fiber Intake in Patients with Type 2 Diabetes Mellitus. The New England Journal of Medicine. 324: 13921398.

Wikanta, T., R. R. Nasution and R. Lestari. 2008. Pengaruh Pemberian κ-Karagenan dan ί-Karagenan terhadap Penurunan Kadar Glukosa Darah Tikus Hiperglikemia [Effect of κ-Carrageenan and ί-Carrageenan Feeding on the Reduction of Hyperglicemic Rat Blood Glucose Level]. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan. 3: 131138. [Bahasa Indonesia].

Elekofehinti, O. O., J. P. Kamdem, I. J. Kade, J. B. T. Rocha, and I. G. Adanlawo. 2013. Hypoglycemic, Antiperoxidative and Antihyperlipidemic Effects of Saponins from Solanum anguivi Lam. Fruits in Alloxan-Induced Diabetic Rats. South African Journal of Botany. 88: 56–61.

Etuk, E. U. 2010. Animals Models for Studying Diabetes Mellitus. Agriculture Biology Journal of North America. 1(2): 130134.

Szkudelski, T. 2001. The Mechanism of Alloxan and Streptozotocin Action in β-cells of the Rat Pancreas. Physiologycal Research. 50: 537546.

Giugliano, D., A. Ceriello and K. Exposito. 2008. Glucose Metabolism and Hyperglycemia. America Journal of Clinical Nutrition. 87: 217S–222S.

Nelson, R. W., C. A. Duesberg, S. L. Ford, E. C. Feldman, D. J. Davenport and L. Neal. 1998. Effect of Dietary Insoluble Fiber on Control of Glycemia in Dogs with Naturally Acquired. Diabetes Mellitus. 212: 380386.

Nelson, R. W., J. C. Scott-Moncrieff, E. C. Feldma, S. E. DeVries-Concannon, P. H. Kass, D. J. Davenport, et al. 2000. Effect of Dietary Insoluble Fiber on Control of Glycemia in Cats with Naturally Acquired. Diabetes Mellitus. 216: 10821088.

Meyer, U. and A. M. Gressner. 2004. Endocrine Regulation of Energy Metabolism: Review of Pathobiochemical and Clinical Chemical Aspects of Leptin, Ghrelin, Adiponectin, and Resistin. Clinical Chemistry. 50: 15111525.

Wolf, B. W., C. S. Lai, M. S. Kipnes, et al. 2002. Glycemic and Insulinemic Responses of Nondiabetic Healthy Adult Subjects to an Experimental Acidinduced Viscosity Complex Incorporated into a Glucose Beverage. Nutrition. 18: 621627.

Torsdottir, I., M. Alpsten, G. Holm, A. S. Sandberg and J. Tölli. 1991. A Small Dose of Soluble Alginate Fiber Affects Postprandial Glycemia and Gastric Emptying in Humans with Diabetes. Journal of Nutrition. 121: 795799.

Tomkin, G. H. 2008.Targets for Intervention in Dyslipidemia in Diabetes. Diabetes Care. 31: S241S248.

Suzuki, T., K. Nakai, Y. Yoshie, T. Shirai and T. Hirano. 1993. Effect of Sodium Alginates Rich in Guluronic and Mannuronic Acids on Cholesterol Leels and Digestive Organs of High-Cholesterol-Fed Rats. Nippon Suisan Gakkaishi. 59: 545551.

Ren, D., H. Noda, H. Amano, T. Nishino and K. Nishizawa. 1994. Study on Antihypertensive and Antihyperlipidemic Effects of Marine Algae. Fisheries Science. 60: 8388.

Bitzur, R., H. Cohen, Y. Kamari, A. Shaish and D. Harats. 2009. Triglycerides and HDL Cholesterol. Diabetes Care. 32: S373S377.

Goldberg, I. J. 2001. Diabetic Dyslipidemia: Ccauses and Consequences. The Journal of Clinical and Endocrinology and Metabolism. 86: 965971.

Baraas, F. 2006. Kardiovaskuler Molekuler. Jakarta: Yayasan Kardia Iqratama.

Paxman, J. R., J. C. Richardson, P. W. Dettmar and B. M. Corfe. 2008. Alginate Reduces the Increased Uptake of Cholesterol and Glucose in Overweight Male Subjects: a Pilot Study. Nutrition Research. 28: 501505.

Downloads

Published

2016-04-12

How to Cite

BLOOD GLUCOSE LEVEL AND LIPID PROFILE OF ALLOXAN–INDUCED DIABETIC RATS TREATED WITH NA-ALGINATE FROM SEAWEED Turbinaria ornata (Turner) J.Agardh. (2016). Jurnal Teknologi (Sciences & Engineering), 78(4-2). https://doi.org/10.11113/jt.v78.8145