APPLICATION OF BIOFLOC TECHNOLOGY IN INTENSIVE FARMING AFFECTED PRODUCTION AND BLOOD PERFORMANCES OF THE CATFISH [Clarias gariepinus (Burchell, 1822)]

Authors

  • Sri Hastuti Lab. of Aquaculture, Faculty of Fisheries and Marine Science, Diponegoro University, Jl. Prof. Soedarto, SH Tembalang, Semarang – 50275, Indonesia
  • Subandiyono Subandiyono Lab. of Aquaculture, Faculty of Fisheries and Marine Science, Diponegoro University, Jl. Prof. Soedarto, SH Tembalang, Semarang – 50275, Indonesia

DOI:

https://doi.org/10.11113/jt.v78.8212

Keywords:

Biofloc technology, catfish [Clarias gariepinus (Burchell, 1822)], growth, intensive, production

Abstract

The biofloc technology can control water quality under negligible water exchange. The aim of this study was to evaluate the  effects of stocking density on production and blood performance of catfish (Clarias gariepinus [Burchell, 1822]). The catfish were reared in biofloc system (heterotrophic bacteria and addition of sugar for a period of 10 wk and used three levels of density i.e. (500, 1 000, and 1 500) fish per m2. The production increased with the increasing of stocking density, relative growth rate decreased with the increasing of that. The stocking density of 1 500 fish per m2 on the biofloc technology can support maximum catfish production, health and proper water quality.

References

Van de Nieuwegiessen, P. G., J. Olwo, S. Khong, J. A. J. Varreth, and J. W. Schrama, 2009. Effects of Age and Stocking Density on the Walfare of African Catfish, Clarias gariepinus Burchall. Aquaculture. 288: 69–75.

Hossain, M. A. R., M. C. M. Beveridge, and G. S. Haylor, 1998. The Effects of Density, Light and Shelter on the Growth and Survival of African Catfish (Clarias gariepinus Burchell, 1822) Fingerlings. Aquaculture. 160: 251–258.

Avnimelech, Y., B. Weber, A. Millstein, B. Hepher, and M. Zoram, 1986. Studies in Circulated Fishponds : Organic Matter Recycling and Nitrogen Transformation. Aquaculture and Fisheries Management. 17: 231–242.

Hargreaves, J. A. 2006. Phytosynthetic Suspended–growth System in Aquaculture. Aquaculture Engineering. 34: 344–363.

Azim, M. E. and D. C. Little. 2008. The Biofloc Technology (BFT) in Indoor Tanks: Water Quality, Biofloc Composition, and Growth and Welfare of Nile Tilapia (Oreochromis niloticus). Aquaculture 238: 29–35.

Avnimelech, Y. 1999. Carbon and Nitrogen Ratio as a Control Element in Aquaculture Systems. Aquaculture. 176: 227–235.

Kuhn, D. D, A. L. Lawrence, G. D. Boardman, S. Patnaik, L. Marsh, and G. J. Flick, Jr. 2010. Evaluation of Two Type of Bioflocs Derived from Biological Treatmen of Fish Effluent as Feed Ingredients for Pasific White Shrimp, Litopenaeus vannamei. Aquaculture. 303: 28–33.

Crab, R., T. Defoirdt, P. Bossier, and W. Verstraete, 2012. Biofloc Technology in Aquaculture: Beneficial Effects and Future Challenges. Aquaculture. 356: 351–356.

Jendrassik, L. and P. Grof. 1938. Colorimetric Method of Determination of Bilirubin. Biochem Z. 297: 81–82.

Andrade, T., A. Afonso, A. Pérez-Jiménez, et al. 2015. Evaluation of Different Stocking Densities in a Senegalese Sole (Solea senegalensis) Farm: Implications for Growth, Humoral Immune Parameters and Oxidative Status. Aquaculture. 438: 6–11.

Ashley, P. J., 2007. Fish Welfare: Current Issues in Aquaculture. Appl. Anim. Behav. Sci. 104: 199–235.

Ebeling, J. M., M. B. Timmons, and J. J. Bisogni, 2006. Engineering Analysis of the Stoichiometry of Photoautotrophic, Autotrophic, and Heterotrophic Removal of Ammonia-Nitrogen in Aquaculture Systems. Aquaculture. 257: 346–358.

Maita, M. 2007. Fish Health Assessment. In Nakagawa, H., M. Sato, D. M. Gatlin III (eds.). Dietary Supplements for the Health and Quality of Cultured Fish. Cambridge: C. A. B. International.

Mommsen, T. P., M. M. Vijayan, and T. W. Moon, 1999. Cortisol in Teleosts: Dynamics, Mechanisms of Action, and Metabolic Regulation. Rev. Fish Biol. Fish. 9: 211–268.

Wendelaar Bonga, S. E. 1997. The Stress Response in Fish. Physiol. Rev. 7: 591–625.

Morgan, A. L., K. D. Thompson, N. A. Auchinachie, and H.Migaud. 2008. The Effect of Seasonality on Normal Haematological and Innate Immune Parameters of Rainbow Trout Oncorhynchus mykiss L. Fish Shellfish Immunol. 25: 791–799.

Pascoli, F., G. S. Lanzano, E. Negrato, C. Poltronieri, A. Trocino, G. Radaelli, and D. Bertotto, 2011. Seasonal Effects on Hematological and Innate Immune Parameters in Sea Bass Dicentrarchus labrax. Fish Shellfish Immunol. 31: 1081–1087.

Tort, L., J. Rotllant, and L. Rovira, 1998. Immunological Suppression in Gilthead Sea Bream Sparus aurata of the North West Mediterranean at Low Temperature. Comp. Biochem. Physiol. A. 120: 175–179.

Tort, L. 2011. Stress and Immune Modulation in Fish. Dev. Comp. Immunol. 35: 1366–1375.

Hasenbein, M., N. A. Fangue, J. P. Geist, L. M. Komorosk, and R. E. Connon. 2016. Physiological Stress Biomarkers Reveal Stocking Density Effects in Late Larval Delta Smelt (Hypomesus transpacificus). Aquaculture 450: 108–115 (In Press).

Downloads

Published

2016-04-12

How to Cite

APPLICATION OF BIOFLOC TECHNOLOGY IN INTENSIVE FARMING AFFECTED PRODUCTION AND BLOOD PERFORMANCES OF THE CATFISH [Clarias gariepinus (Burchell, 1822)]. (2016). Jurnal Teknologi, 78(4-2). https://doi.org/10.11113/jt.v78.8212