A NOVEL MODEL OF PZT ACTUATOR AND ITS APPLICATION IN HYSTERESIS AND VIBRATION CONTROLS

Authors

  • Bashir Bala Muhammad Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
  • Md Habibur Rahman Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
  • Mohd Ridzuan Ahmad Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
  • Muhammad Bashir School of Electro-Mechanical Engineering, Xidian University, Xi’an, China

DOI:

https://doi.org/10.11113/jt.v78.9264

Keywords:

Dynamic piezoelectric actuator, PID controller, piezoelectric actuator, non-dynamic piezoelectric actuator, voltage spring system

Abstract

The piezoelectric actuator is a voltage spring system that behaves in a similar characteristic to mechanical mass spring system. The displacements profile of the piezoelectric actuator shifts due to hysteresis and creep during actuation. The static (non-dynamics) models of piezoelectric actuator developed in the past consisted of a number of equations which could not be simplified in the form of a single transfer function. Furthermore, the modelling of dynamic (vibrating) piezoelectric actuator was not considered.  In this work, we present the behaviour of the piezoelectric actuator in terms of mechanical displacement from applied electric potential. The single transfer function mathematical model is generated representing the actuator characteristics. The dynamic (vibration) model that can vibrate at a desired frequency of the actuator is also developed. The models are developed by system identification from experimental results. A high resolution microscope together with the image processing technique were used to obtain the system characteristics. Simulation using Matlab Simulink is used to validate the experiment (The hysteresis was reduced by 90 % and the vibration was reduced to 97 %). 

References

J. Torres and H. H. Asada. 2014. High-Gain, High Transmissibility PZT Displacement Amplification Using a Rolling-Contact Buckling Mechanism and Preload Compensation Springs. IEEE Trans. Robot. Aug 2014. 30(4): 781–791.

Matsubara, M. Maeda and I. Yamaji. 2014. Vibration Suppression of Boring Bar by Piezoelectric Actuators and LR Circuit. CIRP Ann. - Manuf. Technol. 63(1): 373–376.

Abis, F. Unal and A. Mugan. 2011. Active Vibration Control with Piezoelectric Actuator on a Lathe Machine with a Gain Controller. IEEE International Conference on Mechatronics. 19–22.

C.-Y. S. and M. O. Jian Wang. 2003. Theoretic Modeling and Adaptive Control for Two Degree-Of-Freedom Piezo-Electric Actuated Chatter Suppression System. 42nd IEEE Conference on Decision and Control. 4315–4320.

T. Zhang, H. G. Li and G. P. Cai. 2013. Hysteresis Identification and Adaptive Vibration Control for a Smart Cantilever Beam by a Piezoelectric Actuator. Elsevier. Dec 2013. 203: 168–175.

F. M. and A. S. M. khaled Joujou. 2008. Experimental Fuzzy Logic Active Vibration Control. 5th International Symposium on Mechatronics and its Applications (ISMA08). 6–12.

W. Li and X. Chen. 2013. Compensation of Hysteresis in Piezoelectric Actuators without Dynamics Modeling. Sensors Actuators A Phys. 199: 89–97.

F. Heidary and M. Reza Eslami. 2006. Piezo-Control of Forced Vibrations of a Thermoelastic Composite Plate. Compos. Struct. 74(1): 99–105.

M. N. M, Z. Mohamed, A. M. Abdullahi, M. R. Ahmad and A. R. Husain. 2014. Dynamic Hysteresis Based Modeling of Piezoelectric Actuators. J. Teknol. 67(5): 9–13.

B. B. Muhammad. 2015. Modelling and Vibration Control of Piezoelectric Actuator. Universiti Teknologi Malaysia.

S. T. A. Ctuators, B. Hu, M. Z. Rahim and S. Ding. 2015. Gap Control Of Electrical Discharge Grinding With High Bandwidth Dual Stage Actuators. J. Teknol. 75(11): 101–106.

R. Dong, Y. Tan and Y. Xie. 2016. Identification of Micropositioning Stage with Piezoelectric Actuators. Mech. Syst. Signal Process. 75: 618–630.

A. Michael and C. Y. Kwok. 2014. Piezoelectric Micro-Lens Actuator. Sensors Actuators A Phys. 236: 116–129.

R. Svecko and D. Kusic. 2015. Feedforward Neural Network Position Control of a Piezoelectric Actuator Based on A BAT Search Algorithm. Expert Syst. Appl. 42(13): 5416–5423.

Y. Peng, S. Ito, Y. Shimizu, T. Azuma, W. Gao and E. Niwa. 2014. A Cr-N Thin Film Displacement Sensor for Precision Positioning of a Micro-Stage. Sensors Actuators, A Phys. 211.

J. Chen, C. Zhang, M. Xu, Y. Zi and X. Zhang. 2015. Rhombic Micro-Displacement Amplifier for Piezoelectric Actuator and Its Linear and Hybrid Model. Mech. Syst. Signal Process. 50–51: 580–593.

H. Ghafarirad, S. M. Rezaei, M. Zareinejad and A. Abdullah. 2011. Adaptive Robust Control for Micropositioning of Piezoelectric Actuators with Environment Force Estimation. Trans. Inst. Meas. Control. 34(8): 956–965.

J. Kim and S. Nam. 1995. Development of a Micro-Positioning Grinding Table Using Piezoelectric Voltage Feedback. J. Eng. Manuf. 209(6): 469–474.

V.-T. Liu, H.-C. Huang, C.-L. Lin and Z.-J. Jian. 2007. Neural Net-based Modeling and Control of a Micro-positioning Platform Using Piezoelectric Actuators. J. Vib. Control. 13(3): 309–325.

Y.-T. Liu and C.-K. Wang. 2009. A Study of the Characteristics of a One-Degree-Of-Freedom Positioning Device Using Spring-Mounted Piezoelectric Actuators. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 223(9): 2017–2027.

W. Zhu, Z. Wang, X. Sun, and Z. Zhang. 2001. A Multilayer Inplane Bending Piezoelectric Actuator for Dual-Stage Head-Positioning Control. J. Mater. Sci. Mater. Electron. 12(2): 111–116.

Z. He, G. Guo, L. Feng, W. E. Wong and H. T. Loh. 2006. Microactuation Mechanism with Piezoelectric Element for Magnetic Recording Head Positioning For Spin Stand. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 220(9): 1455–1461.

P. Smithmaitrie and H. S. Tzou. 2005. Electro-dynamics, Micro-Actuation and Design of Arc Stators in an Ultrasonic Curvilinear Motor. J. Sound Vib. 284(3–5): 635–650.

W. K. Chai, Y. Han, K. Higuchi and H. S. Tzou. 2006. Micro-Actuation Characteristics of Rocket Conical Shell Sections. J. Sound Vib. 293(1–2): 286–298.

C.-H. Cheng, A.-S. Yang, C.-J. Lin and W.-J. Huang. 2015. Characteristic Studies of a Novel Piezoelectric Impedance Micropump. Microsyst. Technol. 1–9.

J. Shemesh, A. Bransky and M. Khoury. 2010. Advanced Microfluidic Droplet Manipulation Based On Piezoelectric Actuation. Biomed Microdevices. 12(5): 907–914.

Y. Le and N Hsu. 2009. Equivalent Electrical Network for Performance Characterization of Piezoelectric Peristaltic Micropump. Microfluid Nanofluidics. 7(2): 237–248.

M. Y. Ali, C. Kuang, J. Khan and G. Wang. 2010. A Dynamic Piezoelectric Micropumping Phenomenon. Microfluid Nanofluidics. 9(2–3): 385–396.

P. H. Cazorla, O. Fuchs, M. Cochet, S. Maubert, G. Le Rhun, P. Robert, Y. Fouillet and E. Defay. 2014. Piezoelectric Micro-Pump with PZT Thin Film for Low Consumption Microfluidic Devices. Procedia Eng. 87: 488–491.

D. S. Lee, J. S. Ko and Y. T. Kim. 2004. Bidirectional Pumping Properties of a Peristaltic Piezoelectric Micropump with Simple Design and Chemical Resistance. Thin Solid Films. 468(1–2): 285–290.

J. Kan, K. Tang, G. Liu, G. Zhu and C. Shao. 2008. Development of Serial-Connection Piezoelectric Pumps. Sensors Actuators. A Phys. 144(2): 321–327.

Downloads

Published

2016-06-28

How to Cite

A NOVEL MODEL OF PZT ACTUATOR AND ITS APPLICATION IN HYSTERESIS AND VIBRATION CONTROLS. (2016). Jurnal Teknologi, 78(6-13). https://doi.org/10.11113/jt.v78.9264