GRIP FORCE MEASUREMENT OF SOFT- ACTUATED FINGER EXOSKELETON

Authors

  • I. N. A. M. Nordin Control and Mechatronics Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • A. A. M. Faudzi Control and Mechatronics Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. Z. Kamarudin Control and Mechatronics Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Dyah Ekashanti Octorina Dewi IJN-UTM Cardiovascular Engineering Center, Institute of Human Centred Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Tariq Rehman Control and Mechatronics Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. R. M. Razif Control and Mechatronics Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.9268

Keywords:

Finger exoskeleton, soft robotic glove, soft actuator, pneumatic rubber actuator

Abstract

Over recent years, the reseach in the field of soft actuation has been extensively increased for achieving more complex motion path with smooth, high flexible movement and high generated force at minimum operating pressure. This paper presents the study on gripping force capability of soft actuators applied on glove-type finger exoskeleton, developed in motivation to assist individuals having weak finger gripping ability in their rehabilitation exercise towards hand function restoration. The exoskeleton utilizes five cylindrical shaped pneumatic bending actuators developed in the lab, which use fiber reinforcement as a cause of bending motion that drive finger’s flexion movement. Four right-handed healthy volunteers simulated paralysis participated in the study. At 200kPa safe operating pressure, the soft exoskeleton worn by the subjects demonstrates the ability to provide adequate grip force. The grip force generated from exoskeleton worn on passive right hand is 4.66 ± 0.2 N and 3.61± 0.2 N from passive left hand, both higher than the minimum grip forces measured to hold the Hand Dynamometer of 240 g. It shows good potential to be used as a finger rehabilitation assist device. 

References

National Stroke Association of Malaysia. [Online]. From: http://www.nasam.org/ [Accessed from 1 Nov 2015]

Polygerinos, P., K. C. Galloway, E. Savage, M. Herman, K. O. Donnell, and C. J. Walsh. (2015). Soft Robotic Glove for Hand Rehabilitation and Task Specific Training, IEEE International Conference on Robotics and Automation (ICRA). Washington, USA. 26-30 May 2015. 2913–2919.

Galloway, K. C., P. Polygerinos, C. J. Walsh, and R. J. Wood. (2013). Mechanically Programmable Bend Radius for Fiber-reinforced Soft Actuators. 16th International Conference on Advanced Robotics (ICAR). Montevideo,Uruguay, 25-29 Nov 2013, 1–6.

Sasaki, D., T. Noritsugu, H. Yamamoto, and M. Takaiwa. 2004. Wearable Power Assist Device for Hand Grasping Using Pneumatic Artificial Rubber Muscle. SICE Annual Conference. Sapporo, Japan. 4-6 August 2004. 655–660.

Noritsugu, T., M. Takaiwa, and D. Sasaki. 2008. Power Assist Wear Driven with Pneumatic Rubber Artificial Muscles. 15th International Conference on Mechatronics and Machine Vision in Practice, 2008. Auckland, New Zealand. 2-4 Dec 2008. 539–544.

Polygerinos, P., S. Lyne, L. F. Nicolini, B. Mosadegh, G. M. Whitesides, and C. J. Walsh. 2013. Towards a Soft Pneumatic Glove for Hand Rehabilitation. IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan. 3-7 Nov 2013. 1512–1517.

Wakimoto, S., K. Suzumori, and K. Ogura. 2011. Miniature Pneumatic Curling Rubber Actuator Generating Bidirectional Motion with One Air-Supply Tube. Advanced Robotics, The International Journal of the Robotics Society in Japan. 25(9-10): 1311–1330.

Nordin, I. N. A. M., A. A. M. Faudzi, M. R. M. Razif, E. Natarajan, S. Wakimoto, and K. Suzumori. 2014. Simulations of Two Patterns Fiber Weaves Reinforced in Rubber Actuator. Jurnal Teknologi. 69(3): 133–138.

Nordin, I. N. A. M., M. R. M. Razif, A. A. M. Faudzi, E. Natarajan, K. Iwata, and K. Suzumori. 2013. 3-D Finite-Element Analysis of Fiber-reinforced Soft Bending Actuator for Finger Flexion. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Wollongong, Australia. 9-12 July 2013. 128–133.

Faudzi, A. A. M., M. R. M. Razif, I. N. A. M. Nordin, K. Suzumori, S. Wakimoto, and D. Hirooka. 2012. Development of Bending Soft Actuator with Different Braided Angles. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Koahsiung, Taiwan. 11-14 July 2012. 1093–1098.

Nordin, I. N. A. M., A. A. M. Faudzi, S. Wakimoto, K. Suzumori. 2015. Simulations of Fiber Braided Bending Actuator: Investigation on Position of Fiber layer Placement and Air Chamber Diameter. 10th Asian Control Conference (ASCC). Sabah, Malaysia. 31 May- 3 June 2015. 4–8.

Noritsugu, T., D. Sasaki, and M. Takaiwa. 2003. Artificial Pneumatic Rubber Muscles to a Human Friendly Robot. IEEE International Conference on Robotics and Automation. Taipei, Taiwan. 14-19 Sept 2003. 2188-2193.

Polygerinos, P., Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh. 2014. Soft Robotic Glove for Combined Assistance and at-Home Rehabilitation. Journal of Robotics and Autonomous Systems. 73: 135-143.

Matheus, K. and A. M. Dollar. 2010. Benchmarking Grasping and Manipulation: Properties of the Objects of Daily Living. 2010. IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS). 18-22 Oct 2010. 5020–5027.

Dovat, L., O. Lambercy, R. Gassert, T. Maeder, T. Milner, T. C. Leong, and E. Burdet. 2008. HandCARE: A cable-actuated Rehabilitation System to Train Hand Function After Stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 16(6): 582–591.

Noritsugu, T., M. Takaiwa, and D. Sasaki. 2008. Development of Power Assist Wear using Pneumatic Rubber Artificial Muscles. Asia International Symposium on Mechatronics. Sapporo, Japan. 27-31 Aug 2008. 371–375.

Widia, M. and S. Z. Dawal. 2010. Investigation on Upperlimb Muscle Activity and Grip Strength During Drilling Task. International MultiConference of Engineers and Computer Scientists Vol III IMECS. Hong Kong.17-19 March 2010. 1953-1957.

Sidek, S. N. and A. J. Haja Mohideen. 2012. Mapping of EMG signal to Hand Grip Force at Varying Wrist Angles. 2012. IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). Langkawi, Malaysia. 17-19 Dec 2012. 648–653.

Heck, S., C. Zilleken, D. Pennig, and T. C. Koslowsky. 2012. Reconstruction of Radial Capitellar Fractures using Fine-threaded Implants (FFS). Injury. 43(2): 164–168.

Krause, K. E., E. I. McIntosh, and L. A. Vallis. 2012. Sarcopenia and Predictors of the Fat Free Mass Index in Community-Dwelling and Assisted-Living Older Men and Women. Gait & Posture. 35(2): 180–185.

Downloads

Published

2016-06-28

How to Cite

GRIP FORCE MEASUREMENT OF SOFT- ACTUATED FINGER EXOSKELETON. (2016). Jurnal Teknologi (Sciences & Engineering), 78(6-13). https://doi.org/10.11113/jt.v78.9268