SHIELD TUNNELLING 3D NUMERICAL SIMULATION ON THREE CASE STUDIES

Authors

  • Rafik Demagh University of Batna, Civil Engineering Department, Algeria
  • Fabrice Emeriault Grenoble-INP, UJF-Grenoble 1, CNRS UMR 5521, 3SR, Grenoble F-38041, France
  • Farid Hammoud University of Batna, Civil Engineering Department, Algeria

DOI:

https://doi.org/10.11113/mjce.v26.15872

Keywords:

Tunnel boring machine (TBM), 3D numerical simulation, confining pressure, grouting, in-situ monitoring.

Abstract

In congested urban areas, shallow tunnel constructions are sometimes necessary due to lack of space. Therefore, a careful assessment of their effects on existing constructions is vitally required. In the application of shield tunnel boring machines (TBM), different operations conducted may induce a three-dimensional problem of soil/structure interaction. They are complicated to be represented in a complete numerical simulation that allows evaluation of induced ground movements, in particular surface settlement assessment. A three-dimensional simulation procedure, using finite differences code Flac-3D, taking into account an explicit manner of the main origins of movements in soil mass, is hereby presented in this paper. It is applied to three different tunnel construction sites, with different types of face support and soils (i.e. nature and mechanical characteristics). Results have been compared to those obtained from in-situ measurements during construction. It shows that the proposed 3D simulation procedure is highly relevant, particularly in the adopted representation for different operations performed by tunnel boring machine (excavation, confining pressure, advancement, installation of lining, grouting of annular void, etc.).

References

Benmebarek, S. and Kastner, R. (2000). Modélisation numérique des mouvements de terrain meuble induits par un tunnelier. Revue Canadienne de Géotechnique, 37: 1309-1324.

Bezuijen, A., Talmon, A.M., Kaalberg, F.J., Plugge, R. (2005). Field measurements of grout pressure during tunnelling of Sophia Rail Tunnel. Tunneling. GeoDelft, 83-93.

Bezuijen, A. et Talmon, A.M. (2006). Proceedings of the Geotechnical Aspects of Underground Construction in soft Ground, Bakker and al(eds) Taylor & Francis Group, London, 187-193.

Broere, W. & Brinkgreve, R.B.J. (2002). Phased simulation of a tunnel boring process in soft soil. Numerical Methods in Geotechnical Engineering, Mestat (ed.), Presses de l’ENPC/LCPC, Paris, 529-536.

Demagh, R., Emeriault F. and Kastner R. (2008). 3D modelling of tunnel excavation by TBM in overconsolidated soils. JNGG’08 Nantes, 18-20 juin 2008, 305-312 (in French).

Demagh R., Emeriault E. & Kastner R. (2009). Shield tunnelling -Validation of a complete 3D numerical simulation on 3 different case studies. Euro:Tun 2009. Proceedings of the 2nd International Conference on Computational Methods in Tunnelling. Ruhr University Bochum, September 2009, 77-82.

Demagh R., Emeriault F. & Kastner R. (2009). Modélisation 3D du creusement de tunnel par tunnelier à front pressurisé – Validation sur 3 cas d’études. Proceedings of the 17ème

Conférence de Mécanique des Sols et de Géotechnique (17ème ICSMGE), 5-9 Octobre 2009, Alexandrie, Egypte, 77-82 (in French).

Dias, D., Kastner, R. and Maghazi M. (2000). 3D simulation of slurry shield tunnelling. Proceedings of International Symposium on Geotechnical aspects of underground construction in soft ground, Kusakabe, Balkema, Rotterdam, 351-356.

Dierkens, M. (2005). Mesures rhéologiques et modélisation de matériaux en cours de prise. PhD thesis, INSA-Lyon (in French).

Kasper, T. and Meschke, G. (2004). A 3D finite element simulation model for TBM tunnelling in soft ground. International Journal for Numerical and Analytical Methods in Geomechanics,

: 1441-1460.

Kasper, T. and Meschke, G. (2006). On the influence of face pressure, grouting pressure and TBM design in soft ground tunnelling. Tunnelling and Underground Space Technology, 21:

-171.

Mroueh, H. and Shahrour, I. (1999). Modélisation 3D du creusement de tunnels en site urbain. Revue Française de Génie Civil, 3 : 7-23 (in French).

Mroueh H. and Shahrour I. (2008). A simplified 3D model for tunnel construction using tunnel boring machines. Tunnelling and Underground Space Technology, 23: 38–45.

Peck RB. 1969., Deep excavation and tunnelling in soft ground. In: Proceedings of the 7th International Conference on Soil Mechanics and Foundations Engineering. Mexico City,

State-of-Art, 225–290.

Talmon, A.M., Aanen, L., Bezuigen, A. and van der Zon, W.H. (2005). Grout pressure around a tunnel linning. Tunnelling. A Decade of Progress. GeoDelft, 77-82.

Vanoudheusden, E. et al. (2006). Analysis of movements induced by tunnelling with an earthpressure balance machine and correlation with excavating parameters. Proceedings of the

Geotechnical Aspects of Underground Construction in Soft Ground, Bakker and al(eds) Taylor & Francis Group, London, 81-86.

Yan J., Emeriault F., Kastner R. (2008). Validation d’une procédure de modélisation numérique des mouvements induits par un tunnelier de très grand diamètre dans les argiles molles.

Proceedings of the 26th Rencontres Universitaires de Génie Civil. Nancy, 4 - 6 juin 2008, 8 pages (in French).

Downloads

Published

2018-07-02

Issue

Section

Articles

How to Cite

SHIELD TUNNELLING 3D NUMERICAL SIMULATION ON THREE CASE STUDIES. (2018). Malaysian Journal of Civil Engineering, 26(1). https://doi.org/10.11113/mjce.v26.15872