INVESTIGATION OF PSK/QAM MODULATED HYBRID FIBER OPTIC AND FREE SPACE OPTIC SYSTEM UNDER VARIOUS ATMOSPHERIC LOSSES
DOI:
https://doi.org/10.11113/aej.v13.18071Keywords:
Fiber Optics, Free Space Optics (FSO), QAM, PSK, Fiber Optics, Free Space Optics (FSO), QAM, PSK, Gamma-Gamma turbulence modelAbstract
This research aims to investigate how effectively digital modulation performs to transfer data via hybrid fiber optic and free space optic (FO-FSO) channels for last-mile communication systems. Digital modulation techniques investigated are phase-shift keying (PSK) 8-PSK, 16-PSK, quadrature amplitude modulation (QAM) 4-QAM, 16-QAM, and 64-QAM. FSO is line-of-sight technology being a solution to a last-mile communication system for the challenge of fiber optic cables installation. Combining FSO with fiber optic technology avoids bending losses and the implementation challenges of fiber optic cables in metropolitan areas and between buildings. But atmospheric challenges such as haze, fog, and rain cause signal loss while transmitting data in free space. Also, atmospheric turbulence and antenna misalignments lead to signal error. This paper proposed the models of QAM and PSK digital modulated signal transmission over FO-FSO and compared the results to better fiber optic-FSO links to achieve a last-mile communication network. This fiber optic and FSO model is analyzed for the distance up to 100 km of fiber optic channel and 0.4-1.5 km of FSO channel. Constellation diagrams and error-vector magnitude (EVM) concerning received power at the receiver are compared to analyze FSO channel capacity for various weather attenuations.
References
Garg, A.K., Janyani, V., Batagelj, B., Abidin, N.Z. and Bakar, M.A., 2021. Hybrid FSO/fiber optic link based reliable & energy efficient WDM optical network architecture. Optical Fiber Technology, 61: 102422. DOI: https://doi.org/10.1016/j.yofte.2020.102422
Badar, N. and Jha, R.K., 2017. Performance comparison of various modulation schemes over free space optical (FSO) link employing Gamma–Gamma fading model. Optical and Quantum Electronics, 49: 1-10. DOI: https://doi.org/10.1007/s11082-017-1025-4
Alkholidi, A.G. and Altowij, K.S., 2014. Free space optical communications—theory and practices. Contemporary Issues in Wireless Communications, 159-212. DOI: https://doi.org/10.5772/58884
Trung, H.D., Ai, D.H. and Pham, A.T., 2015. Average channel capacity of free-space optical MIMO systems over atmospheric turbulence channels. ASEAN Engineering Journal, 5(2): 57-66. DOI: https://doi.org/10.11113/aej.v5.15462.
Jia, Z., Yu, J., Chowdhury, A., Ellinas, G. and Chang, G.K., 2007. Simultaneous generation of independent wired and wireless services using a single modulator in millimeter-wave-band radio-over-fiber systems. IEEE Photonics Technology Letters, 19(20): 1691-1693. DOI: https://doi.org/10.1109/LPT.2007.905196
Nguyen, D.N., Bohata, J., Komanec, M., Zvanovec, S., Ortega, B. and Ghassemlooy, Z., 2019, November. Optical Hybrid Fiber/Free-Space and 25 GHz Wireless Transmission using LTE M-QAM Signals. In 2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC) 1-6. IEEE. DOI: https://doi.org/10.1109/WPMC48795.2019.9096169
Trung, H.D., Ai, D.H. and Pham, A.T., 2015. Average channel capacity of free-space optical MIMO systems over atmospheric turbulence channels. ASEAN Engineering Journal, 5(2): 57-66. DOI: https://doi.org/10.11113/aej.v5.15462
Kumar, M.V. and Kumar, V., 2022. Mitigation of Atmospheric Attenuations in Hybrid Fiber-optical and Free-space Optical Channel for Last-mile Communication System. IEIE Transactions on Smart Processing & Computing. 11(1): 64-72. DOI: https://doi.org/IEIESPC.2021.11.1.64
Zhang, R., Ma, J., Wang, Z., Zhang, J., Li, Y., Zheng, G., Liu, W., Yu, J., Zhang, Q., Wang, Q. and Liu, R., 2014. Full-duplex fiber-wireless link with 40 Gbit/s 16-QAM signals for alternative wired and wireless accesses based on homodyne/heterodyne coherent detection. Optical Fiber Technology, 20(3): 261-267. DOI: https://doi.org/10.1016/j.yofte.2014.02.008
Ijaz, M., Ghassemlooy, Z., Pesek, J., Fiser, O., Le Minh, H. and Bentley, E., 2013. Modeling of fog and smoke attenuation in free space optical communications link under controlled laboratory conditions. Journal of Lightwave Technology, 31(11): 1720-1726. DOI: https://doi.org/10.1109/JLT.2013.2257683
Zabidi, S.A., Islam, M.R., Al Khateeb, W. and Naji, A.W., 2011, May. Investigating of rain attenuation impact on free space optics propagation in tropical region. In 2011 4th International Conference on Mechatronics (ICOM) 1-6. IEEE. DOI: https://doi.org/10.1109/ICOM.2011.5937121. (2011).
Al-Gailani, S.A., Mohammad, A.B. and Shaddad, R.Q., 2013. Enhancement of free space optical link in heavy rain attenuation using multiple beam concept. Optik, 124(21): 4798-4801. DOI: https://doi.org/10.1016/j.ijleo.2013.01.098.
Malik, A. and Singh, P., 2015. Free space optics: current applications and future challenges. International Journal of Optics, 2015: 1-7. DOI: https://doi.org/10.1155/2015/945483.
Willebrand, H.A. and Ghuman, B.S., 2001. Fiber optics without fiber. IEEE spectrum, 38(8): 40-45. DOI: https://doi.org/10.1109/6.938713.
Pham, T.V., Nguyen, T.V., Nguyen, N.T., Pham, T.A., Pham, H.T. and Dang, N.T., 2020. Performance analysis of hybrid fiber/FSO backhaul downlink over WDM-PON impaired by four-wave mixing. Journal of Optical Communications, 41(1): 91-98. DOI: https://doi.org/10.1515/joc-2017-0127.
[16] Garg, A.K., Madavi, A.A. and Janyani, V., 2017. Energy efficient flexible hybrid wavelength division multiplexing-time division multiplexing passive optical network with pay as you grow deployment. Optical Engineering, 56(2): 026119-026119. DOI: https://doi.org/10.1117/1.OE.56.2.026119.
Garg, A.K., Janyani, V. and Batagelj, B., 2020. Ring based latency-aware and energy-efficient Hybrid WDM TDM-PON with ODN interconnection capability for smart cities. Optical Fiber Technology, 58: 102242. DOI: https://doi.org/10.1016/j. yofte.2020.102242.
Nguyen, D.N., Zvanovec, S. and Ghassemlooy, Z., 2019. Mitigation of dispersion and turbulence in a hybrid optical fibre and free-space optics link using electronic equalisation. Optik, 196: 163154. DOI: https://doi.org/10.1016/j.ijleo.2019.163154
Vinoth Kumar Mani, Vinod Kumar, 2022. Free-space optical channel performance under atmospheric losses using orthogonal frequency division multiplexing. Indonesian Journal of Electrical Engineering and Computer Science, 25(3): 1571~1579. DOI: http://doi.org/10.11591/ijeecs.v25.i3.pp1571-1579
Singh, H. and Arora, M., 2015. Comparison of bit error rate performance of different modulation techniques over turbulent FSO link. International Journal of Computer Applications, 109(12): 20-24. DOI: http://doi.org/10.5120/19241-0973
Fatadin, I., 2016, April. Estimation of BER from error vector magnitude for optical coherent systems. In Photonics 3(2): 21. Multidisciplinary Digital Publishing Institute. DOI: https://doi.org/10.3390/photonics3020021
Kim, I.I., McArthur, B. and Korevaar, E.J., 2001, February. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. In Optical wireless communications III 4214: 26-37). Spie. DOI: https://doi.org/10.1117/12.417512
Al-Habash, M.A., Andrews, L.C. and Phillips, R.L., 2001. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Optical Engineering, 40(8): 1554-1562. DOI : https://doi.org/10.1117/1.1386641
Andrews, L.C., Phillips, R.L. and Hopen, C.Y., 2001. Laser Beam Scintillation With Applications 99. SPIE press. DOI: https://doi.org/10.1117/3.412858
Bayaki, E., Schober, R. and Mallik, R.K., 2008, November. Performance analysis of free-space optical systems in gamma-gamma fading. In IEEE GLOBECOM 2008-2008 IEEE Global Telecommunications Conference 1-6. IEEE. DOI: https://doi.org/10.1109/GLOCOM.2008.ECP.548.
Sharma, O.P., Janyani, V. and Sancheti, S., 2007, December. Analysis of raised cosine filtering in communication systems. In 2007 Third International Conference on Wireless Communication and Sensor Networks 9-12. IEEE. DOI: https://doi.org/10.1109/WCSN.2007.4475737
García-Zambrana, A., Castillo-Vázquez, C. and Castillo-Vázquez, B., 2010. On the capacity of FSO links over Gamma-Gamma atmospheric turbulence channels using OOK signaling. EURASIP Journal on Wireless Communications and Networking, 2010: 1-9. DOI: https://doi.org/10.1155/2010/127657.
Al-Habash, M.A., Andrews, L.C. and Phillips, R.L., 2001. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Optical engineering, 40(8): 1554-1562. DOI: https://doi.org/10.1117/1.1386641
Byers, H.R., Landsberg, H.E., Wexler, H., Haurwitz, B., Spilhaus, A.F., Willett, H.C., Houghton, H.G. and Middleton, W.K., 1951. Visibility in Meteorology. Compendium of Meteorology: Prepared under the Direction of the Committee on the Compendium of Meteorology, 91-97. DOI: https://doi.org/10.1007/978-1-940033-70-9_7
Srivastava, D., Kaur, G., Singh, G. and Singh, P., 2020. Evaluation of atmospheric detrimental effects on free space optical communication system for Delhi weather. Journal of Optical Communications. DOI: https://doi.org/10.1515/joc-2019-0078
Kruse, P.W., McGlauchlin, L.D. and McQuistan, R.B., 1962. Elements of infrared technology: Generation, transmission and detection. New York: Wiley. DOI: https://doi.org/10.1126/science.137.3524.123.