• Asril Zevri Directorate General of Water Resource, Ministry of Public Works and Housing, Jakarta, 12110, Indonesia
  • Adam Pamudji Rahardjo Department of Civil Engineering and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
  • Djoko Legono Department of Civil Engineering and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia




Tidal modeling, Calibration, Barito – Kapuas Murung – Mengkatip River Network, HEC-RAS., Hydraulic modeling, HEC-RAS, River channel network chains, Manning roughness coefficient, Dadahup irrigation


Optimizing the operational management of tidal irrigation networks is a significant factor in the reactivation program of the swamp irrigation areas in Central Kalimantan Province. Appropriate water level and flow rate control in a tidal environment would provide a better solution for this effort. Monitoring water parameters and hydraulic modeling is an intelligent technique for evaluating irrigation canals' gate system operations. This paper focuses on providing more accurate hydraulic modeling that requires proper boundary conditions and calibration of the canal roughness coefficient. This study aims to obtain a more precise downstream boundary condition data calibration method with an appropriate river cross-sectional roughness coefficient value to improve the overall hydraulic modeling accuracy of the river network connecting to the Dadahup Irrigation Area. The hydraulic modeling utilized the HEC-RAS Software, where input data preparation used geometric data derived from the National Geospatial Agency's DEM in the form of river channel network chain, cross-section, and long-section data. Boundary condition data evaluation compared and selected data generated from references and the Tides Application Software. The results show that the tide prediction from the Tides Application Software provides the slightest difference between the predicted tide and the measured ones. The river network's channel roughness coefficient calibration utilized the generated boundary condition tide and simultaneously measured water level data at several locations. The results show that the most minor Root Mean Squared Error (RMSE) of the Manning roughness coefficient differences of the river channel network can reach 0.04 with a minimum RMSE value of 0.027.


I. M. Fahmid, Wahyudi, A. Agustian, R. Abdullah, dan E. Gunawan, 2022 “The Potential Swamp Land Development to Support Food Estates Programmes in Central Kalimantan, Indonesia,” Environ. Urban. ASIA, 13(1): 44–55, DOI: https://doi.org/10.1177/09754253221078178.

R. S. B. Waspodo dan M. I. Sahana, 2019, “River water quality modeling in Barito watershed,” Institute Of Physics Conference Series Earth Environmental Science, 399(1): 1-9 doi: https://iopscience.iop.org/article/10.1088/1755-1315/399/1/012018.

B. S. Wignyosukarto dan H. Santoso, 2019, “Optimization of Spatial Planning of Tidal Swamp Area To Support the Community Development of Buol Regency, Indonesia,” in Iternational Commission on Irrigation and Drainage, 3(September): 1–7, DOI: https://www.icid.org/wif3_bali_2019/wif3_1-2_13-min.pdf.

D. A. Suriadikarta, 2012, “Teknologi Pengelolaan Lahan Rawa Berkelanjutan: Studi Kasus Kawasan Ex PLG Kalimantan Tengah,” Jurnal Sumberdaya Lahan, 6(1): 45–54, doi: https://ejurnal.litbang.pertanian.go.id/index.php/jsl/article/view/6301.

A. Pramono, S. Sisno, dan M. Sholichin, 2021, “Study of Water Management Development in Petung Swamp Areas at the Province of East Kalimantan,” Civil Environmental Science, 004(02): 173–182, DOI: https://doi.org/10.21776/ub.civense.2021.00402.7.

R. Arsenault, F. Brissette, dan J. L. Martel, 2018, “The hazards of split-sample validation in hydrological model calibration,” Journal of Hydrology, 566(May): 346–362, DOI: https://doi.org/10.3390/w11071382.

G. J. Acuña, H. Ávila, dan F. A. Canales, 2019, “River model calibration based on the design of experiments theory. A case study: Meta River, Colombia,” Water (Switzerland), 11(7). DOI: https://doi.org/10.1016/j.asej.2020.01.011.

R. K. Singh, V. G. Kumar Villuri, S. Pasupuleti, dan R. Nune, 2020, “Hydrodynamic modeling for identifying flood vulnerability zones in lower Damodar river of eastern India,” Ain Shams Engineering Journal, 11(4): 1035–1046, DOI: https://doi.org/10.1016/j.asej.2020.01.011.

D. M. Ferreira, C. V. S. Fernandes, E. Kaviski, dan T. Bleninger, 2021, “Calibration of river hydrodynamic models: Analysis from the dynamic component in roughness coefficients,” Journal of Hydrology, 598 (February): 1-13 DOI: https://doi.org/10.1016/j.jhydrol.2021.126136.

Mohammad Reza Khanarmuei, K. Suara, dan R. J. Brown, 2019, “Calibration and Assimilation in Hydrodynamic Model of a Micro-Tidal Estuary and Comparison with Lagrangian Drifter Data,” in 38th IAHR World Congress - “Water: Connecting the World,” vol. 38: 6359–6368, DOI: https://doi.org/10.3390/w12020575.

J. J. Williams dan L. S. Esteves, 2017, “Guidance on Setup, Calibration, and Validation of Hydrodynamic, Wave, and Sediment Models for Shelf Seas and Estuaries,” Advances Civil Engineering, 2017: 1-7, DOI: https://doi.org/10.1155/2017/5251902.

G. W. Brunner dan CEIWR-HEC, 2016, “HEC-RAS River Analysis System: User Manual 1D and 2D Version 5.0,” US Army Corps Eng., no. February, 1–790, [online]. Available at www.hec.usace.army.mil.

R. Ciptadi, A. P. Rahardjo, dan B. Kamulyan, 2021, “Evaluation and Enhancement of Sustainable Organic Fishpond Farming in the Sei Teras Fishpond Irrigation Area, Central Kalimantan,” in IOP Conference Series: Earth and Environmental Science, 930(1): 1-12 DOI: https://iopscience.iop.org/article/10.1088/1755-1315/930/1/012009.

E. P. Kvale, 2006, “The origin of neap-spring tidal cycles,” Marine Geology, 235(1-4): 5–18, DOI: https://doi.org/10.1016/j.margeo.2006.10.001.

F. Shadiq, R. Riduan, dan M. A. Noor, 2012 “Analysis Of Barito Channel Tidal Harmonic Pattern And Water Level Rise Effects To Banjarmasin City Hydrotopography,” in International Seminar on University-Based Research for Wetland Development Joint Program Between Lambung Mangkurat University and Government of South Kalimantan Province, , November: 58–61.

A. Adane dan B. Abate, 2022, “River Modeling for Flood Inundation Map Predictions Using 2D-Hec-Ras Hydraulic Modeling With Integration of Gis,” ASEAN Engineering Journal, 12(1): 9–15, DOI: https://doi.org/10.11113/aej.v12.16483.

E. Yogafanny dan D. Legono, 2022, “a Comparative Study of Missing Rainfall Data Analysis Using the Methods of Inversed Square Distance and Arithmetic Mean,” ASEAN Engineering Journal, 12(2): 69–74, DOI: https://doi.org/10.11113/aej.v12.16974.

Runniawan Onny P, Kamija, A. R. T. D. K, dan J. A. Mustikawan2010,, “Pemanfaatan Software Tidal Model Driver untuk Memprediksi Pasang Surut (Studi Kasus Perairan Pondok Dayung, Sungai Barito dan Perairan Pulau Batek),” Jurnal Hidro-Oseanografi ,Sekolah Tinggi Teknik Aangkatan Laut, 3: 37–46, doi: http://dx.doi.org/10.37875/hidropilar.v1i1.19.

T. M. El-Geziry dan M. Said, 2014, “Comparison of Two Packages for Tidal Analysis and Prediction: An Exemplar Case Study of Abu-Qir Bay, Alexandria, Egypt,” Blue Biotechnology Journal, 3(June): 185–190, DOI: https://www.researchgate.net/publication/279755099.

I. G. Tunas, Y. Arafat, dan H. Azikin, 2019, “Integration of Digital Elevation Model (DEM) and HEC-RAS Hydrodynamic Model for flood routing,” in IOP Conference Series: Materials Science and Engineering, 620(1): 1-7 DOI: https://iopscience.iop.org/article/10.1088/1757-899X/620/1/012026.

Salmani, Fakhrurrazi, dan M. Wahyudi, 2013, “Analisa Ketersediaan Air Daerah Aliran Sungai Barito Hulu Dengan Menggunakan Debit Hasil Perhitungan Metode Nreca,” Jurrnal INTEKNA, 2(1): 114–118, doi: https://ejurnal.poliban.ac.id/index.php/intekna/article/view/123.

J. S. Kim, C. J. Lee, W. Kim, dan Y. J. Kim, 2010, “Roughness coefficient and its uncertainty in a gravel-bed river,” Water Science Engineering, 3(2): 217–232, DOI: 10.3882/j.issn.1674-2370.2010.02.010.

J. G. Diniz dan M. Saliba, 2018. “Manning’s roughness coefficient for the Doce River,” 1–12,

S. Soomro, C. Hu, M. Munir Babar, dan M. Hyder Alias Aamir, 2021, “Estimation of Manning’s Roughness Coefficient Through Calibration Using HEC-RAS Model: A Case Study of Rohri Canal, Pakistan,” , American Journal of Civil Engineering, 9(1): 1, DOI: http://dx.doi.org/10.11648/j.ajce.20210901.11.

P. V. Timbadiya, P. L. Patel, dan P. D. Porey, 2011, “Calibration of HEC-RAS Model on Prediction of Flood for Lower Tapi River, India,” Journal of Water Resources and Protection, 03(11): 805–811, DOI: https://www.scirp.org/journal/paperinformation.aspx?paperid=8680.

L. Kadhim Hameed dan S. Tawfeek Ali, 2013, “Estimating of manning’s roughness coefficient for Hilla river through calibration using HEC-RAS model,” Jordan Journal of Civil Engineering. 7(1): 44–53, DOI: https://core.ac.uk/download/pdf/234698531.pdf.

N. Pasquale, P. Perona, A. Wombacher, dan P. Burlando, 2014, “Hydrodynamic model calibration from pattern recognition of non-orthorectified terrestrial photographs,” Computers and Geoscience, 62: 160–167, DOI: https://doi.org/10.1016/j.cageo.2013.06.014.

K. A. Fauzan, S. B. Wignyosukarto, dan Jayadi. R, 2021, “Water Management Evaluation for Upgrading Tidal Irrigation System, Katingan, Kalimantan,” in IOP Conference Series: Earth and Environmental Science, 794(1): 1–10, DOI: 10.1088/1755-1315/794/1/012040.

M. A. Bessar, P. Matte, dan F. Anctil, 2020, “Uncertainty analysis of a 1D river hydraulic model with adaptive calibration,” Water (Switzerland), 12(2): 1-24 DOI: 10.3390/w12020561.

S. S. Rahajeng, R. Jayadi, A. Maas, dan B. S. Wignyosukarto, 2021, DOI: 10.1088/1755-1315/1091/1/012034. “Revitalization of Reservoir and Canals to Improve The Reclamation Process at Unit Tamban Tidal Irrigation Area, Central Kalimantan,” 9th AUN/SEED-Net Regional Conference Natural Disaster, 2021, doi: 10.1088/1755-1315/1091/1/012034.




How to Cite

Zevri, A., Rahardjo, A. P. ., & Legono, D. . (2023). A PROPOSED TECHNIQUE FOR IMPROVING THE ACCURACY OF TIDAL MODELING OF RIVER NETWORKS CONNECTING TO THE DADAHUP IRRIGATION AREA. ASEAN Engineering Journal, 13(3), 99-106. https://doi.org/10.11113/aej.v13.19393