FLOOR TILE ENERGY HARVESTER: DESIGN STRATEGIES, PRODUCT DEVELOPMENT AND PERFORMANCE ANALYSIS
DOI:
https://doi.org/10.11113/aej.v15.21944Keywords:
Renewable energy, piezoelectric transducer, photovoltaic, electromagnetic and footstep power generation.Abstract
Developing nations face formidable challenges in the realm of energy generation. Leveraging renewable energy resources emerges as a strategic solution to address this energy crisis. Footstep energy conversion, although a technology in its nascent stage in certain developing regions, holds great promise for electricity generation. This comprehensive review delves into the intricate analyses of the underlying mechanisms for energy extraction, specific design considerations, advancements in prototypes, ongoing implementation initiatives, and the economic dimensions associated with various footstep energy harvesting technologies. The structure of footstep power generation proves to be an economical and reasonable energy solution for individuals in common settings. Its applicability spans numerous uses in rural areas where power availability is scarce or entirely absent. By harnessing energy from non-renewable sources, footstep power generation becomes invaluable for locations without conventional power infrastructure. Its efficacy extends to all roads and various footstep applications, contributing significantly to the generation of unconventional energy such as electricity. 19 journals have been reviewed in terms of design, product development, and performance analysis.
References
Gholikhani M, Roshani H, Dessouky S, Papagiannakis AT. 2020. A critical review of roadway energy harvesting technologies. Applied Energy 261: 114388. DOI: https://doi.org/https://doi.org/10.1016/j.apenergy.2019.114388.
Cao H, Kong L, Tang M, Zhang Z, Wu X, Lu L, et al. 2023 An electromagnetic energy harvester for applications in a high-speed rail pavement system. International Journal Mechanixal Sciences. 243: 108018. DOI: https://doi.org/https://doi.org/10.1016/j.ijmecsci.2022.108018.
Wardlaw JL, Karaman I, Karsilayan Aİ. 2013. Low-Power Circuits and Energy Harvesting for Structural Health Monitoring of Bridges. IEEE Sensor Journal 13: 709–22. DOI: https://doi.org/10.1109/JSEN.2012.2226712.
Zhao J, Xu Z, Law M-K, Heidari H, Abdellatif SO, Imran MA, et al. 2021. Simulation of Crystalline Silicon Photovoltaic Cells for Wearable Applications. IEEE Access. 9: 20868–77. DOI: https://doi.org/10.1109/ACCESS.2021.3050431.
Zhao J, Ghannam R, Law M-K, Imran MA, Heidari H. 2020; Photovoltaic Power Harvesting Technologies in Biomedical Implantable Devices Considering the Optimal Location. IEEE Journal Electromagnet RF Microwaves Medicine Biology 4: 148–55. DOI: https://doi.org/10.1109/JERM.2019.2937970.
Cai Y, Wang L, Wang W-W, Liu D, Zhao F-Y. 2020. Solar energy harvesting potential of a photovoltaic-thermoelectric cooling and power generation system: Bidirectional modeling and performance optimization. Journal of Cleaner Production 254: 120150.DOI: https://doi.org/https://doi.org/10.1016/j.jclepro.2020.120150.
Pecunia V, Occhipinti LG, Hoye RLZ. 2021. Emerging Indoor Photovoltaic Technologies for Sustainable Internet of Things. Advanced Energy Material. 11: 2100698. DOI: https://doi.org/https://doi.org/10.1002/aenm.202100698.
Massetti M, Jiao F, Ferguson AJ, Zhao D, Wijeratne K, Würger A, et al. 2021 Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. Chemical Review Journal. 121: 12465–547. DOI: https://doi.org/10.1021/acs.chemrev.1c00218.
Nozariasbmarz A, Collins H, Dsouza K, Polash MH, Hosseini M, Hyland M, et al. 2020. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Applied Energy 258: 114069. DOI: https://doi.org/https://doi.org/10.1016/j.apenergy.2019.114069.
Zhu X, Yu Y, Li F. 2019. A review on thermoelectric energy harvesting from asphalt pavement: Configuration, performance and future. Construction and Building Material. 228: 116818. DOI: https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.116818.
Li C, Jiang F, Liu C, Liu P, Xu J. 2019. Present and future thermoelectric materials toward wearable energy harvesting. Appllied Material Today. 15: 543–57. DOI: https://doi.org/https://doi.org/10.1016/j.apmt.2019.04.007.
Fernández-Yáñez P, Romero V, Armas O, Cerretti G. 2021 Thermal management of thermoelectric generators for waste energy recovery. Appllied Thermal Engineering. 196: 117291. DOI: https://doi.org/https://doi.org/10.1016/j.applthermaleng.2021.117291.
Tohidi F, Ghazanfari Holagh S, Chitsaz A. 2022. Thermoelectric Generators: A comprehensive review of characteristics and applications. Appllied Thermal Engineering. 201: 117793. DOI: https://doi.org/https://doi.org/10.1016/j.applthermaleng.2021.117793.
Rösch AG, Gall A, Aslan S, Hecht M, Franke L, Mallick MM, et al. 2021. Fully printed origami thermoelectric generators for energy-harvesting. Npj Flexible Electronics 5: 1. DOI: https://doi.org/10.1038/s41528-020-00098-1.
Jaziri N, Boughamoura A, Müller J, Mezghani B, Tounsi F, Ismail M. 2020. A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Reports 6: 264-87. DOI: https://doi.org/https://doi.org/10.1016/j.egyr.2019.12.011.
Sezer N, Koç M. 2021. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy. 80:105567. DOI: https://doi.org/https://doi.org/10.1016/j.nanoen.2020.105567.
Covaci C, Gontean A. 2020. Piezoelectric Energy Harvesting Solutions: A Review. Sensors. 20. DOI: https://doi.org/10.3390/s20123512.
Li T, Lee PS. 2022. Piezoelectric Energy Harvesting Technology: From Materials, Structures, to Applications. Small Structure. 3: 2100128. DOI: https://doi.org/https://doi.org/10.1002/sstr.202100128.
Rashmi MR, Trilok Sairam K, Suresh A. 2023. Energy harvesting through piezoelectric technology. Material Today Proceedings DOI: https://doi.org/https://doi.org/10.1016/j.matpr.2023.07.252.
Mahajan A, Goel A, Verma A. 2021. A review on energy harvesting based piezoelectric system. Material Today Proceeding. 43: 65–73. DOI: https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.210.
Wang H, Jasim A. 14 - Piezoelectric energy harvesting from pavement. In: Pacheco-Torgal F, Amirkhanian S, Wang H, Schlangen EBT-E-EPCM, 2020. Woodhead Publication Serices Civil Structure Engineering, Woodhead Publishing. 367–82. DOI: https://doi.org/https://doi.org/10.1016/B978 0 12 818981 8.0014 X.
Dal Bo L, Gardonio P, Turco E. 2020. Analysis and scaling study of vibration energy harvesting with reactive electromagnetic and piezoelectric transducers. Journal Sound Vibration 484: 115510. DOI: https://doi.org/https://doi.org/10.1016/j.jsv.2020.115510.
Muscat, A., Bhattacharya, S., & Zhu, Y. 2022. Electromagnetic vibrational energy harvesters: A review. Sensors, 22(15): 5555. https://doi.org/10.3390/s22155555.
Asadi M, Ahmadi R, Abazari AM. 2023. Footstep-powered floor tile: Design and evaluation of an electromagnetic frequency up-converted energy harvesting system enhanced by a cylindrical Halbach array. Sustainable Energy Technology Assessments 60: 103571. DOI: https://doi.org/https://doi.org/10.1016/j.seta.2023.103571.
Zou Y, Raveendran V, Chen J. 2020. Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy 77: 105303. DOI: https://doi.org/https://doi.org/10.1016/j.nanoen.2020.105303.
Tian J, Chen X, Wang ZL. 2020. Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology. 31: 242001. DOI: https://doi.org/10.1088/1361-6528/ab793e.
Chen Y, Cheng Y, Jie Y, Cao X, Wang N, Wang ZL. 2019. Energy harvesting and wireless power transmission by a hybridized electromagnetic–triboelectric nanogenerator. Energy Environment Science. 12: 2678–84. DOI: https://doi.org/10.1039/C9EE01245A.
Ryu H, Yoon H-J, Kim S-W. 2019. Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting. Advance Material. 31: 1802898. DOI: https://doi.org/https://doi.org/10.1002/adma.201802898.
Liu H, Fu H, Sun L, Lee C, Yeatman EM. 2021. Hybrid energy harvesting technology: From materials, structural design, system integration to applications. Renewable Sustainable Energy Reviews 137: 110473. DOI: https://doi.org/https://doi.org/10.1016/j.rser.2020.110473.
Zhao C, Zhang Q, Zhang W, Du X, Zhang Y, Gong S, et al. 2019 Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting. Nano Energy. 57: 440–9. DOI: https://doi.org/https://doi.org/10.1016/j.nanoen.2018.12.062.
Eom, Hyo J. 2013."Faraday’s law of induction." In Primary Theory of Electromagnetics, 95-111. Dordrecht: Springer Netherlands, DOI: https://doi.org/10.1007/978-94-007-7143-7_4.
Beeby SP, Tudor MJ, White NM. 2006. Energy harvesting vibration sources for microsystems applications. Measurementt Science Technology 17: R175. DOI: https://doi.org/10.1088/0957-0233/17/12/R01.
Muhammad Mohamed Salleh, Mohamad Ruzaini Jamri, Shahrul Nizam Abd Rahman, Mohd Hafiz Ghazali, Izzuddin Zaman, Imran Husin, et al. 2023. Energy Harvesting From Mechanical Footstep: Design And Optimization. Journal of Advance Reseaech Applied Mechanics. 111: 120–30. DOI: https://doi.org/10.37934/aram.111.1.120130.
Salleh MM, Jamri MR, Abd Rahman SN, Ghazali MH, Zaman I, Husin I, et al. 2023. Energy Harvesting From Mechanical Footstep: Design And Optimization. Journal of Advance Reseaech Applied Mechanics 111: 120–30.
Sekhar MC, Veena E, Kumar NS, Naidu KCB, Mallikarjuna A, Basha DB. 2023. A Review on Piezoelectric Materials and Their Applications. Crystal Research Technology 58: 2200130. DOI: https://doi.org/https://doi.org/10.1002/crat.202200130.
Bairagi S, Shahid-ul-Islam, Shahadat M, Mulvihill DM, Ali W. 2023. Mechanical energy harvesting and self-powered electronic applications of textile-based piezoelectric nanogenerators: A systematic review. Nano Energy 111: 108414. DOI: https://doi.org/https://doi.org/10.1016/j.nanoen.2023.108414.
Kamal PNM, 2018. Buniyamin N. Using piezoelectric elements as footsteps energy harvester: an investigation. 2018 IEEE 8th Internationla. Conference System Engineering Technology., IEEE; 1–6.
Nwaigwe KN, Mutabilwa P, Dintwa E. 2019. An overview of solar power (PV systems) integration into electricity grids. Material Science Energy Technology. 2: 629–33. DOI: https://doi.org/https://doi.org/10.1016/j.mset.2019.07.002.
Venkateswari R, Sreejith S. 2019. Factors influencing the efficiency of photovoltaic system. Renewable Sustainable Energy Reviews 101: 376–94. DOI: https://doi.org/https://doi.org/10.1016/j.rser.2018.11.012.
Li S, Ma T, Wang D. 2023. Photovoltaic pavement and solar road: A review and perspectives. Sustainable Energy Technology Assessments 55: 102933. DOI: https://doi.org/https://doi.org/10.1016/j.seta.2022.102933.
Zhou B, Pei J, Nasir DM, Zhang J. 2021. A review on solar pavement and photovoltaic/thermal (PV/T) system. Transportation Research Part D Transport Environment 93: 102753. DOI: https://doi.org/https://doi.org/10.1016/j.trd.2021.102753.
Cascetta F, Lo Schiavo A, Minardo A, Musto M, Rotondo G, Calcagni A. 2018. Analysis of the energy extracted by a harvester based on a piezoelectric tile. Current Applied Physics 18: 905–11. DOI: https://doi.org/https://doi.org/10.1016/j.cap.2018.04.015.
Evans M, Tang L, Tao K, Aw K. 2019. Design and optimisation of an underfloor energy harvesting system. Sensors Actuators A Physical 285: 613–22. DOI: https://doi.org/https://doi.org/10.1016/j.sna.2018.12.002.
Abadi PB, Darlis D, Suraatmadja MS. 2018. Green energy harvesting from human footsteps. MATEC Web Conf 197.
Selim KK, Yehia HM, Abdalfatah S. 2023. Human Footsteps-based Energy Harvesting Using Piezoelectric Elements. 2023 International Telecommunication Conference. 140–4. DOI: https://doi.org/10.1109/ITC-Egypt58155.2023.10206103.
Kim K-B, Cho JY, Jabbar H, Ahn JH, Hong S Do, Woo SB, et al. 2018. Optimized composite piezoelectric energy harvesting floor tile for smart home energy management. Energy Conversion Managment 171: 31–7. DOI: https://doi.org/https://doi.org/10.1016/j.enconman.2018.05.031.
Yingyong P, Thainiramit P, Jayasvasti S, Thanach-Issarasak N, Isarakorn D. 2021. Evaluation of harvesting energy from pedestrians using piezoelectric floor tile energy harvester. Sensors Actuators A Physical 331: 113035. DOI: https://doi.org/https://doi.org/10.1016/j.sna.2021.113035.
Panthongsy P, Isarakorn D, Janphuang P, Hamamoto K. 2018. Fabrication and evaluation of energy harvesting floor using piezoelectric frequency up-converting mechanism. Sensors Actuators A Physical 279: 321–30. DOI: https://doi.org/https://doi.org/10.1016/j.sna.2018.06.035.
Huang K, Zhang H, Jiang J, Zhang Y, Zhou Y, Sun L, et al. 2022. The optimal design of a piezoelectric energy harvester for smart pavements. International Journal Mechanical Sciences 232: 107609. DOI: https://doi.org/https://doi.org/10.1016/j.ijmecsci.2022.107609.
Yuan H, Wang S, Wang C, Song Z, Li Y. 2022. Design of piezoelectric device compatible with pavement considering traffic: Simulation, laboratory and on-site. Applied Energy 306: 118153. DOI: https://doi.org/https://doi.org/10.1016/j.apenergy.2021.118153.
Chand AA, Shamsul Arefin ASM, Islam FR, Prasad KA, Singh S, Cirrincione M, et al. 2020. Design simulation of a novel fluid based footstep energy harvesting system. Sustainable Energy Technology Assessments 39: 100708. DOI: https://doi.org/https://doi.org/10.1016/j.seta.2020.100708.
Liu M, Lin R, Zhou S, Yu Y, Ishida A, McGrath M, et al. 2018. Design, simulation and experiment of a novel high efficiency energy harvesting paver. Applied Energy. 212: 966–75. DOI: https://doi.org/https://doi.org/10.1016/j.apenergy.2017.12.123.
Jintanawan T, Phanomchoeng G, Suwankawin S, Kreepoke P, Chetchatree P, U-viengchai C. 2020. Design of Kinetic-Energy Harvesting Floors. Energies 13. DOI: https://doi.org/10.3390/en13205419.
Zou H-X, Zhu Q-W, He J-Y, Zhao L-C, Wei K-X, Zhang W-M, et al. 2024. Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management. Applied Energy 353: 122082. DOI: https://doi.org/https://doi.org/10.1016/j.apenergy.2023.122082.
Ismail, Firas B., Nizar FO Al-Muhsen, and L. Sarravanan Linganathan. 2020. "Design and fabrication of mechanical power generation systems using footsteps." International Journal of Electrical and Electronic Engineering & Telecommunications 9(3): 183-8.
Zhang Y, Ma T, Yang H, Li Z, Wang Y. 2023. Simulation and experimental study on the energy performance of a pre-fabricated photovoltaic pavement. Applied Energy 342: 121122. DOI: https://doi.org/https://doi.org/10.1016/j.apenergy.2023.121122.
Zhou B, Pei J, Calautit JK, Zhang J, 2021. Guo F. Solar self-powered wireless charging pavement—a review on photovoltaic pavement and wireless charging for electric vehicles. Sustainable Energy Fuels. 5: 5139–59. DOI: https://doi.org/10.1039/D1SE00739D.
Hu H, Zha X, Li Z, Lv R. 2022. Preparation and performance study of solar pavement panel based on transparent Resin-Concrete. Sustainable Energy Technology Assessments 52: 102169. DOI: https://doi.org/https://doi.org/10.1016/j.seta.2022.102169.
Efthymiou C, Santamouris M, Kolokotsa D, Koras A. 2016. Development and testing of photovoltaic pavement for heat island mitigation. Solar Energy 130: 148–60. DOI: https://doi.org/https://doi.org/10.1016/j.solener.2016.01.054.
Dezfooli AS, Nejad FM, Zakeri H, Kazemifard S. 2017. Solar pavement: A new emerging technology. Solar Energy. 149: 272–84. DOI: https://doi.org/https://doi.org/10.1016/j.solener.2017.04.016.
Nussbaum JH, Lake RA, Coutu RA. 2016. Standardized testing of non-standard photovoltaic pavement surfaces. 2016 IEEE National. Aerospace Electronics. Conference. Ohio Innovation. Summit, 1–8. DOI: https://doi.org/10.1109/NAECON.2016.7856766.
Leng S, Ye F, Wan S, Shi W, Ma G. 2023. Optimizing piezoelectric properties and temperature stability via Nb2O5 doping in PZT-based ceramics. Ceramics International DOI: https://doi.org/https://doi.org/10.1016/j.ceramint.2023.09.295.
Sodano HA, Park G, Inman DJ. 2004. An investigation into the performance of macro-fiber composites for sensing and structural vibration applications. Mechanical System Signal Processing. 18: 683–97. DOI: https://doi.org/https://doi.org/10.1016/S0888-3270(03)00081-5.
Truitt A, Mahmoodi SN. 2013. A review on active wind energy harvesting designs. International Journal Precision Engineering Manufacturing. 14: 1667–75. DOI: https://doi.org/10.1007/s12541-013-0226-4.
Wang X, Wang Y, Zhang Y, Wang H, Gu Z, Zou H. 2022. Enhancement of the piezoelectric property in PMN-PZT/PZT thin films. Ceramics International 48: 12813–8. DOI: https://doi.org/https://doi.org/10.1016/j.ceramint.2022.01.152.
Xu X, Cao D, Yang H, He M. 2018. Application of piezoelectric transducer in energy harvesting in pavement. International Journal Pavement Research Technology 11: 388–95. DOI: https://doi.org/https://doi.org/10.1016/j.ijprt.2017.09.011.
Elvin NG, Elvin AA. 2011. An experimentally validated electromagnetic energy harvester. Journal Sound Vibration. 330: 2314–24. DOI: https://doi.org/https://doi.org/10.1016/j.jsv.2010.11.024.
Datta U, Dessouky S, Papagiannakis AT. 2017. Harvesting Thermoelectric Energy from Asphalt Pavements. Transportation Research Record 2628: 12–22. DOI: https://doi.org/10.3141/2628-02.
Haider-e-Karar, Khuwaja AA, Sattar A. 2015. Solar power remote monitoring and controlling using Arduino, LabVIEW and web browser. 2015 Power Generation System Renewable Energy Technology. 1–4. DOI: https://doi.org/10.1109/PGSRET.2015.7312240