SITE-SPECIFIC DISAGGREGATION ANALYSIS OF RECENT EARTHQUAKE ON THE AMBON COAST

Authors

  • Kusmanto Kusmanto Natural Disaster Management Engineering, Department of Civil and Environmental Engineering, Gadjah Mada University, Indonesia
  • Sito Ismanti Department of Civil and Environmental Engineering, Gadjah Mada University, Indonesia
  • Angga Fajar Setiawan Department of Civil and Environmental Engineering, Gadjah Mada University, Indonesia

DOI:

https://doi.org/10.11113/aej.v14.20476

Keywords:

probabilistic, seismic risk, uniform hazard spectrum, disaggregation, Background earthquakes

Abstract

Seismic activity in the eastern region of Indonesia, particularly in Ambon, has been a matter of great concern because of its high tectonic activity. The devastating magnitude 6.5 earthquake in September 2019, which resulted in fatalities and significant damage, highlighted the region’s vulnerability and emphasized the importance of understanding the area’s seismic hazards. Although previous studies have been conducted, this study aims to fill critical gaps in the literature by using the latest seismic data until 2022 and updated attenuation equations. Disaggregation analysis is employed to identify ground motion characteristics, that are crucial for calculating synthetic ground motion acceleration. Under risk-targeted maximum considered earthquake (MCER) conditions, the study results show a peak ground acceleration of 0.444 g, with spectral acceleration at 0.2 s reaching 1.093 g, which decreases to 0.350 g at 1.0 s. Notably, background earthquake sources play a dominant role in contributing to the region’s high seismic hazard potential. The results of this study highlight the urgency of updating Indonesia’s national seismic hazard map. The study also recommends future studies to explore additional parameters of newly discovered faults to enhance understanding of fault movements and their impacts in the study area.

References

Marasabessy, M., Pallu, M. S., Lopa, R. T., & Thaha, M. A. 2020. Development of flood forecasting model and warning systems at Way Ruhu – Ambon. IOP Conference Series: Earth and Environmental Science. 419(1): 012115. DOI: http://dx.doi.org/10.1088/1755-1315/419/1/012115

Patria, A., Tsutsumi, H., & Natawidjaja, D. H. 2021. Active fault mapping in the onshore northern Banda Arc, Indonesia: Implications for active tectonics and seismic potential. Journal of Asian Earth Sciences. 218: 1–13. DOI: http://dx.doi.org/10.1016/j.jseaes.2021.104881

Irsyam, M., Dangkua, D. T., Kusumastuti, D., & Kertapati, E. K. 2007. Methodology of Site-Specific Seismic Hazard Analysis for Important Civil Structure. Petra Civil Engineering Journal. 9(2). Available: https://ojs.petra.ac.id/ojsnew/index.php/civ/article/view/16657/16649

Asrurifak, M., Irsyam, M., Budiono, B., Hendriyawan, H., & Triyoso, W. 2010. Development of Spectral Hazard Map for Indonesia with a Return Period of 2500 Years using Probabilistic Method. Civil Engineering Dimension. 12(1): 52–62. DOI: http://dx.doi.org/10.9744/ced.12.1.52-62

National Earthquake Study Center (PUSGEN) and Housing and Settlement Research and Development Center, Eds. 2017. Indonesia Earthquake Source and Hazard Map 2017, First Edition. Bandung: Center for Housing and Settlement Research and Development, Research and Development Agency, Ministry of Public Works.Available: https://simantu.pu.go.id/content/?id=3605. Accessed: May 01, 2023.

National Earthquake Study Center (PUSGEN). 2022. Earthquake Disaggregation Book 2022 For Planning and Evaluation of Earthquake Resistant Infrastructure. Ministry of Public Works and Housing. Available: http://perpus.ditbtpp.id/digital/buku/detail/2208. Accessed: May 23, 2023.

Meilano, I. et al. 2021. Source characteristics of the 2019 Mw 6.5 Ambon, Eastern Indonesia, earthquake inferred from seismic and geodetic data. Seismological Research Letters. 92(6): 3339–3348. DOI: http://dx.doi.org/10.1785/0220210021

Kamaruddin, B., Sahara, D. P., & Halauwet, Y. 2022. Refining the regional aftershocks catalog of the Ambon earthquake Mw 6.5 on 26 September 2019 using manual picking and a non-linear algorithm: Preliminary result. Journal of Physics: Conference Series. 2243(1): 012014. DOI: http://dx.doi.org/10.1088/1742-6596/2243/1/012014

Bazzurro, P., & Cornell, C. A. 1999. Disaggregation of seismic hazard. Bulletin of the Seismological Society of America. 89(2): 501–520. DOI: http://dx.doi.org/10.1785/BSSA0890020501

Makrup, L. L., Irsyam, M., Sengara, I. W., & Hendriyawan, H. 2010. Hazard Deaggregation for Indonesia. Jurnal Teknik Sipil Insitut Teknologi Bandung. 17(3): 181. DOI: http://dx.doi.org/10.5614/jts.2010.17.3.4

Ambraseys, N. 2002. The Seismic Activity of the Marmara Sea Region over the Last 2000 Years. Bulletin of the Seismological Society of America. 92(1): 1–18. DOI: http://dx.doi.org/10.1785/0120000843

Teguh, M. 2011. Proposed Synthetic Ground Motion of Yogyakarta Region. Universitas Islam Indonesia. 11(1): 9–15. Available: https://publikasiilmiah.ums.ac.id//handle/11617/1929

USGS. Accessed May 24, 2023. Available: https://earthquake.usgs.gov/earthquakes/search

ISC Bulletin. Accessed May 24, 2023. DOI: https://doi.org/10.31905/D808B830

Sunardi, B. 2015. Synthetic Ground Acceleration of Yogyakarta City Based on Earthquake Hazard Deaggregation. Journal of Geology and Mining. 6(3). Available: http://jlbg.geologi.esdm.go.id/index.php/jlbg/article/view/85/85

Peterson, C., & Seligman, M. E. P. 2004. Character strengths and virtues: A handbook and classification. Washington, DC: American Psychological Association; Oxford University Press. Available: https://psycnet.apa.org/record/2004-13277-000

Gardner, J. K., & Knopoff, L. 1974. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?. Bulletin of the Seismological Society of America. 64 (5): 1363–1367. DOI: https://doi.org/10.1785/BSSA0640051363

Elhuda, I., Agustawijaya, D. S., & Sulistiyono, H. 2018. Evaluation of Earthquake Territory in Lombok using Statistical Method. International Journal of Emerging Trends in Science and Technology. 5(1). DOI: http://dx.doi.org/10.18535/ijetst/v5i1.05

[19] Wiemer, S. 2001. A Software Package to Analyze Seismicity: ZMAP. Seismological Research Letters. 72(3): 373–382. DOI: http://dx.doi.org/10.1785/gssrl.72.3.373

Singh, S. K., Bazan, E., & Esteva, L. 1980. Expected earthquake magnitude from a fault. Bulletin of the Seismological Society of America. 70(3): 903–914. DOI: http://dx.doi.org/10.1785/BSSA0700030903

Hanks, T. C., & Kanamori, H. 1979. A moment magnitude scale. Journal of Geophysical Research. 84(B5): 2348. DOI: http://dx.doi.org/10.1029/JB084iB05p02348

Pasau, G., & Tanauma, A. 2011. Modelling Earthquake Sources in the North Sulawesi Region as an Earthquake Disaster Mitigation Effort. Jurnal Ilmu Sosial. 15(1): 202. DOI: http://dx.doi.org/10.35799/jis.11.2.2011.208

Cornell, C. A., & Vanmarcke, E. H. 1969. The Major Influences on Seismic Risk. Proceedings of the 4th World Conference on Earthquake Engineering, Santiago, Chile. A1:69–83. Available: http://www.iitk.ac.in/nicee/wcee/article/4_vol1_A1-69.pdf

Ordaz, M., Salgado-Gálvez, M. A., & Giraldo, S. 2021. R-CRISIS: 35 years of continuous developments and improvements for probabilistic seismic hazard analysis. Bulletin of Earthquake Engineering. 19(7): 2797–2816. DOI: http://dx.doi.org/10.1007/s10518-021-01098-w

Parker, G. A., Stewart, J. P., Boore, D. M., Atkinson, G. M., & Hassani, B. 2022. NGA-subduction global ground motion models with regional adjustment factors. Earthquake Spectra. 38(1): 456–493. DOI: http://dx.doi.org/10.1177/87552930211034889

Bommer, J. J. 2012. Challenges of Building Logic Trees for Probabilistic Seismic Hazard Analysis. Earthquake Spectra. 28: 1723–1735. DOI: http://dx.doi.org/10.1193/1.4000079

Tselentis, G.-A., & Danciu, L. 2010. Probabilistic seismic hazard assessment in Greece – Part 1: Engineering ground motion parameters. Natural Hazards and Earth System Sciences. 10(1): 25–39. DOI: http://dx.doi.org/10.5194/nhess-10-25-2010

Cornell, C. A. 1968. Engineering seismic risk analysis. Bulletin of the Seismological Society of America. 58(5): 1583–1606. DOI: http://dx.doi.org/10.1785/BSSA0580051583

Fonseca, J., & Vilanova, S. 2011. Comment on Sousa, M. L. and Costa, A. C., ‘Ground motion scenarios consistent with probabilistic seismic hazard disaggregation analysis. Application to mainland Portugal’. Bulletin of Earthquake Engineering. 9(4): 1289–1295. DOI: http://dx.doi.org/10.1007/s10518-011-9275-1

Barani, S., Spallarossa, D., & Bazzurro, P. 2009. Disaggregation of probabilistic ground-motion hazard in Italy. Bulletin of the Seismological Society of America. 99(5): 2638–2661. DOI: http://dx.doi.org/10.1785/0120080348.

Iervolino, I. 2011. Design Earthquakes and Conditional Hazard. Dolšek, M. (eds) Protection of Built Environment Against Earthquakes. Springer, Dordrecht. DOI: http://dx.doi.org/10.1007/978-94-007-1448-9_3.

Bradley, B., Cubrinovski, M., & Wentz, F. 2022. Probabilistic seismic hazard analysis of peak ground acceleration for major regional New Zealand locations. Bulletin of the New Zealand Society for Earthquake Engineering. 55(1): 15–24. DOI: http://dx.doi.org/10.5459/bnzsee.55.1.15-24

Fox, M., Stafford, P., & Sullivan, T. 2015. Seismic hazard disaggregation in performance‐based earthquake engineering: Occurrence or exceedance? Earthquake Engineering & Structural Dynamics.45(5): 835–842. DOI: http://dx.doi.org/10.1002/eqe.2675

Baker, J., Rezaeian, S., Goulet, C., Luco, N., & Teng, G. 2021. A subset of Cybershake ground-motion time series for response-history analysis. Earthquake Spectra. 37(2): 1162–1176. DOI: http://dx.doi.org/10.1177/8755293020981970

Peláez, J., Casado, C., & Henares, J. 2002. Deaggregation in magnitude, distance, and azimuth in the south and west of the Iberian Peninsula. Bulletin of the Seismological Society of America. 92(6): 2177–2185. DOI: http://dx.doi.org/10.1785/0120010295

McGuire, R. 1995. Probabilistic seismic hazard analysis and design earthquakes: Closing the loop. Bulletin of the Seismological Society of America. 85(5): 1275–1284. DOI: http://dx.doi.org/10.1785/bssa0850051275

Petersen, M. et al. 2019. The 2018 update of the US National Seismic Hazard Model: Overview of model and implications. Earthquake Spectra. 36(1): 5–41. DOI: http://dx.doi.org/10.1177/8755293019878199

Azarbakht, A., & Douglas, J. 2022. Variations in uniform hazard spectra and disaggregated scenarios during earthquake sequences. Bulletin of Earthquake Engineering. 21(1): 77–94.

DOI: http://dx.doi.org/10.1007/s10518-022-01540-7

National Standardization Agency of Indonesia. 2019. Indonesian Standard Code, Earthquake Resistance Design for Buildings (SNI 03-1726-2019). Jakarta, Indonesia. Available: https://pesta.bsn.go.id/produk/detail/12762-sni17262019. Accessed: May 12, 2023.

Sunardi, B. 2019. Re-Evaluation of Seismic Hazard in Tasikmalaya City Using Probabilistic Approach. International Journal of GEOMATE. 17(63): 187–194. DOI: http://dx.doi.org/10.21660/2019.63.60620

Pawirodikromo, W., Makrup, L., Teguh, M., & Suryo, B. 2020. Development of synthetic ground motion at a specific site in Yogyakarta town, Indonesia utilizing the PSHA Method. E3S Web Conferences. 156 (2020) 02011: 1–10. DOI: http://dx.doi.org/10.1051/e3sconf/202015602011

Gu, C. et al. 2018. Ground motion in Kuwait from regional and local earthquakes: Potential effects on tall buildings. Pure and Applied Geophysics. 175(12): 4183–4195. DOI: http://dx.doi.org/10.1007/s00024-018-1943-5

Rakuasa, H., Karsidi, A., Rifai, A., Tambunan, M., & K, A. 2022. Spatial dynamics model of earthquake prone area in Ambon City. IOP Conference Series: Earth and Environmental Science, 1039(1): 012057. DOI: http://dx.doi.org/10.1088/1755-1315/1039/1/0120

Downloads

Published

2024-08-31

Issue

Section

Articles

How to Cite

SITE-SPECIFIC DISAGGREGATION ANALYSIS OF RECENT EARTHQUAKE ON THE AMBON COAST. (2024). ASEAN Engineering Journal, 14(3), 29-40. https://doi.org/10.11113/aej.v14.20476