GROUNDWATER RESPONSE TO TIDES ON A SANDY BEACH

Authors

  • N.S. Rahim Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia
  • Ilya K. Othman Centre for River and Coastal Engineering (CRCE), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia
  • M.H. Jamal Jamal Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia
  • Z. Ismail Centre for River and Coastal Engineering (CRCE), Research Institute for Sustainable Environment (RISE), Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/aej.v14.20740

Keywords:

sandy beach, water table, tides, morphology, waves

Abstract

Beach profile formation and morphology have been widely studied in recent years. A key point of understanding the dynamics of sandy beaches is the knowledge of the interactions between tides and groundwater with the beach profile, despite the challenges of conducting high-quality measurements. This study aims to clarify the response of groundwater levels to tides during two fieldworks: inter-monsoon (2017) and Southwest monsoon (2018) at Desaru Beach. Four monitoring wells were installed perpendicular to the beach, alongside a tide gauge, a wave buoy, and an underwater current meter. The findings showed that the water table was generally not flat but fluctuated with time following the tidal pattern at a tangent. Lag times observed in all wells ranged from 3 hours 20 minutes to no lag times during the spring and from about 4 hours 40 minutes to no lag times during the neap. The groundwater closest to the sea indicated a shorter lag time at high tides than low tides during the inter-monsoon and Southwest monsoon. This study indicated that the beach groundwater filled up faster than it drained between rising and falling tides. The time lags of groundwater levels established in this study can be utilised in coastal flood forecasting for similar beach conditions.

 

Keywords: Sandy beach, water table, tides, morphology, waves

 

Kajian mengenai pembentukan dan morfologi profil pantai dijalankan secara meluas sejak kebelakangan ini. Satu perkara penting dalam memahami dinamik pantai berpasir adalah pengetahuan tentang interaksi antara pasang surut dan air bumi terhadap profil pantai, meskipun terdapat kesukaran dalam melakukan pengukuran berkualiti tinggi. Kajian ini bertujuan untuk menjelaskan respons paras air bumi terhadap pasang surut semasa dua kerja lapangan dijalankan iaitu antara-musim (2017) dan musim barat daya (2018). Empat perigi pemantauan dipasang secara serenjang dengan pantai, bersama-sama dengan tolok pasang surut, boya gelombang dan meter arus. Hasil kajian menunjukkan aras air secara umumnya tidak rata tetapi berubah mengikut corak pasang surut dengan tangen. Air bumi yang terdekat dengan laut menunjukkan masa lengah yang dicerap dalam semua perigi berjulat antara 12 minit hingga 3 jam 35 minit semasa pasang surut perbani dan dari 5 minit hingga 3 jam 55 minit semasa pasang anak. Air bumi yang terdekat dengan laut menunjukkan masa lengah yang lebih pendek semasa pasang tinggi berbanding pasang surut semasa antara-musim, sementara keadaan tersebut kekal relatif konsisten semasa musim barat daya. Kajian ini menunjukkan bahawa air bumi memenuhi dengan lebih cepat daripada mengalir keluar antara pasang naik dan pasang surut. Masa lengah paras air bumi yang ditetapkan dalam kajian ini boleh digunakan dalam meramal banjir pantai untuk keadaan pantai yang serupa.

 

Kata kunci: Pantai berpasir, aras air, pasang surut, morfologi, gelombang

References

Davidson-Arnott, R. 2010. An Introduction to Coastal Processes and Geomorphology. United States, Cambridge University Press.

Horn, D.P. 2002. Beach Groundwater Dynamics. Geomorphology, 48: 121-146. DOI: http://dx.doi.org/10.1016/S0169-555X(02)00178-2

Nielsen, P. 1988. Wave setup: A Field Study. Journal of Geophysical Research, 93 (C12): 15643-15652

Horn, D.P. 2006. Measurements and Modeling of Beach Groundwater Flow in the Swash Zone: A Review. Continental Shelf Research, 26: 622-652. DOI: http://dx.doi.org/10.1016/j.csr.2006.02.001

Nielsen, P. 1990. Tidal Dynamics of the Water Table in Beaches. Water Resources Research, 26(9): 2127-2134

Brakenhoff, L. 2015. Interaction of Tides, Groundwater Levels and Surface Moisture on a Sandy Beach. Master diss., Utrecht University, Netherlands

Chen, W., Van Der Werf, J.J. and Hulscher, S.J.M.H. 2023. A Review of Practical Models of Sand Transport in the Swash Zone. Earth-Science Reviews. 238: 104355. DOI: http://dx.doi.org/10.1016/j.earscirev.2023.104355

Cartwright, N. 2004. Groundwater Dynamics and the Salinity Structure in Sandy Beaches. PhD diss., University of Queensland, Australia

Grant, U.S. 1948. Influence of the Water Table on Beach Aggradation and Degradation. Journal of Marine Research, 7: 655-60

Turner, R.J. 1990. The Effects of a Mid-Foreshore Groundwater Effluent Zone on Tidal-Cycle Sediment Distribution in Puget Sound, Washington. Journal of Coastal Research, 6 (3): 597-610

Baird, A.J., Horn, D.P., Mason, T.E. 1998. Validation of a Boussinesq Model of Beach Groundwater Behaviour. Marine Geology 148: 55– 69

DOI: http://dx.doi.org/10.1016/S0025-3227(98)00026-7

Bakhtyar, R., Brovelli, A., Barry, D.A., Li, L. 2011. Wave-Induced Water Table Fluctuations, Sediment Transport and Beach Profile Change: Modeling and Comparison with Large-Scale Laboratory Experiments. Coastal Engineering, 58(1): 103-118. DOI: http://dx.doi.org/10.1016/j.coastaleng.2010.08.004

Abarca, E., Karam, H., Hemond, H.F. and Harvey F. 2013. Transient Groundwater Dynamics in a Coastal Aquifer: The Effects of Tides, the Lunar Cycle and the Beach Profile. Water Resources Research, 49: 2473-2488. DOI: http://dx.doi.org/10.1002/wrcr.20075

de Drézigué, O.D., Sous, D., Lambert, A., Gouaud, F. and Rey, V. 2009. Water table Response to Tidal Forcing in the Truc-Vert Sandy Beach. Journal of Coastal Research, SI 56: 1761-1765

Berahim, M. 2014. Longshore Sediment Transport in the Swash Zone at Desaru Beach. Master diss., Universiti Teknologi Malaysia, Malaysia

Rahim, N.S., Jamal, M.H., Abd Wahab, A.K., Othman, I.K., Ismail, Z., Othman, N. and Sa'ari, R. 2016. Sandy Beach Profile Evolution. Malaysian Journal of Civil Engineering, 28(3): 301-313. DOI: http://dx.doi.org/10.11113/mjce.v28n0.466

The World Bank Group and the Asian Development Bank. 2021. Climate Risk Country Profile: Malaysia. World Bank Publications.

Dłużewski, M. Dłużewska, J.R., Hesp, P.A., Tomczak, J.O. and Dubis, L. 2023. Impact of Coastline Orientation on the Dynamics of Foredune Growth. Miscellanea Geographica 27(4): 147-156 DOI: http://dx.doi.org/10.2478/mgrsd-2023-0020

Łabuz, T.A. 2016. A Review of Field Methods to Survey Coastal Dunes-Experience Based on Research from South Baltic Coast. Journal of Coastal Conservation, 20(20): 175-190. DOI: http://dx.doi.org/10.2478/mgrsd-2023-0020

Head, K.H. 2006. Manual of Soil Laboratory Testing- Soil Classification and Compaction Tests. 1. Whittles Publishing, UK

British Standard Institution 1990. British Standard Methods of Test for Soils for Civil Engineering Purpose, Part 2: Classification Test. London: BS1377

Saponieri, A. and Damiani, L. 2015. Numerical Analysis of Infiltration in a Drained Beach. International Journal of Sustainable Development and Planning. 10: 467-486 DOI: http://dx.doi.org/10.2495/SDP-V10-N4-467-486

Das, B.M. 2011. Principles of Foundation Engineering, SI Seventh Edition. Cengage Learning, USA

Reeve, D., Chadwick, A. and Fleming, C. 2012. Coastal Engineering: Processes, Theory and Design Practice. USA and Canada, Spon Press

Hegge, B.J. and Masselink, G. 1991. Groundwater-table Responds to Wave Run-up: an Experimental Study from Western Australia. Journal of Coastal Research, 7 (3): 623-634

Tan, M.L., Ibrahim, A.L., Duan, Z., Cracknell, A.P. and Chaplot, V. 2015. Evaluation of Six-High Resolution Satellite and Ground-Based Precipitation Products over Malaysia. Remote Sens., 7: 1504-1528

DOI: http://dx.doi.org/10.3390/rs70201504

Urish, D.W. and McKenna, T.E. 2004. Tidal Effects on Groundwater Discharge through a Sandy Marine Beach. Groundwater, 42(7): 971-982

Alfarrah, N. and Walraevens, K. 2018. Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions. Water, 10(2): 143. DOI: http://dx.doi.org/10.3390/w10020143

Othman, N., Abd Wahab, A.K. and Jamal, M.H. 2014. Effects of Seasonal Variations on Sandy Beach Groundwater Table and Swash Zone Sediment Transport. Proceedings of 34th Conference on Coastal Engineering. Coastal Engineering Research, California, 1-12. ISBN 978-0-9896611-2-6.DOI: http://dx.doi.org/10.9753/icce.v34.sediment.59

Austin, M.J. and Buscombe, D. 2008. Morphological Change and Sediment Dynamics of the Beach Step on a Macrotidal Gravel Beach. International Journal of Marine Geology, Geochemistry and Geophysics. 249: 167 183. DOI: http://dx.doi.org/10.1016/j.margeo.2007.11.008

Othman, N. 2019. Influence of Seasonal Hydrological Variation on Swash Zone Morphological Changes. PhD thesis, Universiti Teknologi Malaysia, Malaysia

Downloads

Published

2024-08-31

Issue

Section

Articles

How to Cite

GROUNDWATER RESPONSE TO TIDES ON A SANDY BEACH. (2024). ASEAN Engineering Journal, 14(3), 63-73. https://doi.org/10.11113/aej.v14.20740