COMPARISON OF OZONATION (O3) AND AOPS (O3/H2O2) IN PURIFICATION OF WELL WATER IN KLUMPRIT VILLAGE, CENTRAL JAVA, INDONESIA
DOI:
https://doi.org/10.11113/aej.v14.21139Keywords:
ozonation, AOPs, O3/H2O2, clean water, public health, covid-19Abstract
Water is a very important need for human life. The need for clean water has increased due to changes in people's behavior during the COVID-19 pandemic. Despite the increasing need for clean water during the pandemic, access to it remains unequal. One of the areas with poor water sources is Klumprit Village, Nusawungu, Cilacap, Central Java, where the water is cloudy, yellow in color, and a rustic smell. According to the Regulation of Ministry of Health of the Republic of Indonesia Number 32 of 2017, water that is suitable for sanitation needs is water that is odorless, tasteless, not cloudy or has a low level of turbidity. Ozone is an environmentally friendly technology because it does not produce harmful by-products. In addition to ozone, the production of clean water can use Advanced Oxidation Processes (AOPs) with (O3/H2O2). The existence of H2O2 will increase the ability of ozone in the production of clean water or water purification. In this study, ozonation and AOPs (O3/H2O2) were carried out to purify the yellow and cloudy well water in Klumprit Village, Cilacap, Central Java as an effort to improve public health during the COVID-19 pandemic. The research method was to compare ozonation and AOPs (O3/H2O2). The study will include variations in pH levels, specifically neutral pH (untreated sample) and alkaline, as well as different concentrations of H2O2. The experimental data included Fe and Mn content in water before and after the treatment process. Based on the results of this study, it was found that the yellow color of the groundwater in Klumprit village is caused by high levels of manganese (Mn). The lowest concentration of Mn was achieved after 60 minutes of ozonation at an alkaline pH of 9, with a concentration of 0.266 mg/L. The iron (Fe) content showed fluctuation for both treatment methods, ozonation (O3) and advanced oxidation processes (O3/H2O2).
References
Rahayu, S.A., and Gumilar, M.H. 2017. Uji Cemaran Air Minum Masyarakat Sekitar Margahayu Raya Bandung Dengan Identifikasi Bakteri Escherichia coli. Indonesian journal of pharmaceutical science and technology. 4(2): 50-56. DOI: 10.15416/ijpst.v4i2.- 13112
Badan Pusat Statistik. 2020. Data air bersih. BPS (Badan Pusat Statistik)
Misa, A. Duka, R.S., Layuk, S., and Kawatu, Y.T. (2019) ‘Hubungan Kedalaman Sumur Bor dengan Kadar Besi (Fe) dan Mangan (Mn) di Kelurahan Malendeng Kecamatan Paal 2 Kota Manado’, Journal of Wind Engineering and Industrial Aerodynamics. 26(3): 1–4.
Ningrum, S. O., (2018). Analisis Kualitas Badan Air Sumur dan Kualitas Air Sumur di Sekitar Pabrik Gula Rejo Agung Baru Kota Madiun. Jurnal Kesehatan Lingkungan. 10(1): 1–12.
Peraturan Menteri Kesehatan Republik Indonesia Nomor 32 Tahun 2017 tentang Standar Baku Mutu Kesehatan Lingkungan Dan Persyaratan Kesehatan Air untuk Keperluan Higiene Sanitasi, Kolam Renang, Solus Per Aqua, dan Pemandian Umum.
Abdi, C., Khair, R. M., and Aisyah, S. 2017. Pengaruh Ozonisasi terhadap Penurunan Intensitas Warna dan Kadar Besi (Fe) pada Air Gambut. Jukung. Jurnal Teknik Lingkungan. 3(1: 21–29. DOI: https://doi.org/10.20527/jukung.v3i1.3196
Andreozzi, R., Caprio, V., Marotta, R., Vogne, D., 2003. Paracetamol Oxidation from Aqueous Solutions by Means of Ozonation and H2O2/UV System. Water Res. 37: 993-1044.
Ibanes J.G, Rodrigo. M.M, and Moran M.T; 2005, Laboratory Exsperiments on the Electrochemical Remediation of Environment. Journal of Chemical Education, 82(10): 1548- 1548.
Summerfelt, S. T. 2002. Ozonation and UV irradiation - An introduction and examples of current applications. Aquacultural Engineering. 28(1–2): 21–36. DOI: 10.1016/S0144-8609(02)00069-9.
Chen, J. dan Wang, H. 2020. Degradation and mineralization of ofloxacin by ozonation and peroxone (O3/H2O2). Chemosphere. 1-31.
Chen, J. dan Wang, H. 2019. Catalytic ozonation of sulfamethoxazole over Fe3O4/Co3O4 composites. Chemosphere. 14-24.
Estikarini, Hutami Dinar., Hadiwidodo, Mochtar.,and Luvita, Veny. 2016. Penurunan Kadar COD dan TSS pada Limbah Tekstil dengan Metode Ozonasi. Jurnal Teknik Limgkungan. 5(1): 1-11
Rayaroth, M. P. et al. (2022). Advanced oxidation processes (AOPs) based wastewater treatment - unexpected nitration side reactions - a serious environmental issue: A review. Chemical Engineering Journal. 430. DOI: https://doi.org/10.1016/j.cej.2021.133002.
Rekhate, C.V. Srivastava, J.K. 2020. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- A review. Chemical Engineering Journal Advances 3. 100031.
Pędziwiatr, P. et al. 2018. Decomposition of Hydrogen Peroxide - Kinetics and Review of Chosen Catalysts. Acta Innovations. 26: 45–52.
Liya Fu, C. W. 2019. Ozonation reactivity characteristics of dissolved organic matter in secondary petrochemical wastewater by single ozone, ozone/H2O2, and ozone/catalyst. Chemosphere. 34-43.
Ullmann's Encyclopedia of Industrial Chemistry. 1991.: Wiley-VCH Verlag GmbH & Co. KgaA
Wulansarie, R., Chafidz, A., Hidayat, P., Rengga, W. D. P., Afrizal, F. J., Dwipawarman, A., Bismo, S., & Arifin, R. 2020. Effectiveness of Ozonation Process on Treating Tofu Industrial Liquid Waste: Effect of pH Conditions. Materials Science Forum. 981: 336–341.
Hidayanti, N., Rezagama, A., and Luvita, V. 2015. Pengolahan Logam Fe dan Mn dalam Air dengan Metode Ozonasi (O3) dan Adsorpsi. Teknik Lingkungan. 5(1): 1–10.
Sukmilin, A., and Sangsirimongkolying, R. 2021. Removal of iron from groundwater by ozonation: The response surface methodology for parameter optimization. Environment and Natural Resources Journal. 19(4): 330–336. DOI: https://doi.org/10.32526/ennrj/19/2020286
Connor, J. T. O. 1976. Effect of Ozonation on the Removal of Iron From a Ground Water. American Water Works Assosiation. 68(6): 315–319.
Pichler, Thomas. 2017. Re: Is it possible for iron (Fe) to have negative values in groundwater?. Retrieved from: https://www.researchgate.net/post/Is_it_possible_for_iron_Fe_to_have_negative_values_in_groundwater/5a1300fa48954c5b9b478039/citation/download. Retrieved date: July, 13 2023
Emmanuel, Evens. 2020. Re: Is it possible for iron (Fe) to have negative values in groundwater?. Retrieved from: https://www.researchgate.net/post/Is_it_possible_for_iron_Fe_to_have_negative_values_in_groundwater/5e7c23c0f378252bca563181/citation/download. Retrieved date: July, 15 2023
Sallanko, J., Lakso, E., & Röpelinen, J. 2006. Iron Behavior in the Ozonation and Filtration of Groundwater. Ozone: Science and Engineering. 28(4): 269–273. DOI: https://doi.org/10.1080/01919510600721795
Abraham, N., James, J., Banerji, T., and Menon, R. 2020. Development of a novel groundwater iron removal system using adsorptive Fe(II) process. Groundwater for Sustainable Development. 10(Ii): 100318. DOI: https://doi.org/10.1016/j.gsd.2019.100318
Sukmilin, A., Boonchom, B., and Jarusutthirak, C. 2019. Catalytic ozonation using iron-doped water treatment sludge as a catalyst for treatment of phenol in synthetic wastewater. Environment and Natural Resources Journal. 17(2): 87–95. DOI: https://doi.org/10.32526/ennrj.17.2.2019.15
Reckow, D. A., Knocke, W. R., Kearney, M. J., and Parks, C. A. 1991. Oxidation Of Iron And Manganese By Ozone. Ozone: Science & Engineering. 13(6): 675–695. DOI: https://doi.org/10.1080/01919512.1991.10555708
Rohmatun, Roosmini, D. and Notodarmojo, S. 2007. Studi Penurunan Kandungan Besi Organik dalam Air Tanah dengan Oksidasi H2O2 –UV. PROC. ITB Sains & Tek. 39(1): 58–69.
Kasmiarti, G. Sakinah, R.A. Yudono, B. 2021. The Analysis of Manganese (Mn) in Waste Water Treatment (IPAL) of Coal Mine of PT Bukit Asam Indonesia. Indonesian Journal of Fundamental and Applied Chemistry. 6(2): 53-58.