DEVELOPMENT OF DIRECT-INK WRITER FOR PROTOTYPING PAPER BASED CAPACITIVE SWITCH AND CHARACTERISATIONS
DOI:
https://doi.org/10.11113/aej.v15.22910Keywords:
Graphite, Carbon Ink, Direct ink writing, capacitive switch, electronic materialAbstract
This study presents a comprehensive investigation into the development and application of direct ink writing (DIW) techniques for rapid and cost-effective prototyping of capacitive switches. The research applied direct writing with mini-CNC and extrusion systems to achieve precise control over the carbon ink deposition process, enabling the fabrication of complex sensor geometries with high accuracy. The performance and characteristics of a fabricated capacitive sensor were evaluated using various characterization techniques, including Field Emission-Scanning Electron Microscopy (FE-SEM) for morphological examination, Energy Dispersive X-ray (EDX) for elemental mapping, Xray-diffraction (XRD) for assessing the crystallinity of the carbon composite material, nanoindentation for mechanical property assessment, and current-voltage and capacitance measurements. With 47.4% carbon content, as indicated by the FE-SEM, the printed carbon trace's elastic modulus and electrical conductivity are determined at 3.31±1.3 GPa and range from 100 to 190 S/m, respectively. The physical mixed carbon composite ink remains highly crystalline and robust as indicated by the XRD and EDX results. Nanoindentation suggested the need for a protective liner to avoid plastic deformation, but this altered the log ΔC of the capacitive switch. The printed capacitive switch is responsive to 3 to 4 Hz of tapping. The study demonstrates the application of DIW in printing functional capacitive switches with suitable physical and electrical properties, contributing to the realization of innovative and versatile sensor fabrication solutions.
References
Fekiri, C., C. Kim, H.-C. Kim, J. H. Cho, I. H. Lee. 2022. Multi-material Additive Fabrication of a Carbon Nanotube-Based Flexible Tactile Sensor. International Journal of Precision Engineering and Manufacturing. 23(4): 453-458. DOI: https://doi.org/10.1007/s12541-022-00632-3
Hu, X., W. Yang. 2010. Planar capacitive sensors – designs and applications. Sensor Review. 30(1): 24-39. DOI: https://doi.org/10.1108/02602281011010772
Tsamis, E. D., J. N. Avaritsiotis. 2005. Design of planar capacitive type sensor for “water content” monitoring in a production line. Sensors and Actuators A: Physical. 118(2): 202-211. DOI: https://doi.org/10.1016/j.sna.2004.07.008
Balke, N., M. Gajek, A. K. Tagantsev, L. W. Martin, Y.-H. Chu, R. Ramesh, S. V. Kalinin. 2010. Direct Observation of Capacitor Switching Using Planar Electrodes. Advanced Functional Materials. 20(20): 3466-3475. DOI: https://doi.org/doi.org/10.1002/adfm.201000475
Moheimani, R., P. Hosseini, S. Mohammadi, H. Dalir. 2022. Recent Advances on Capacitive Proximity Sensors: From Design and Materials to Creative Applications. C (Journal of Carbon Research) 8(2): 26. DOI: https://doi.org/10.3390/c8020026.
Gong, X., K. Huang, Y.-H. Wu, X.-S. Zhang. 2022. Recent progress on screen-printed flexible sensors for human health monitoring. Sensors and Actuators A: Physical. 345: 113821. DOI: https://doi.org/10.1016/j.sna.2022.113821
Shim, J.-S., J. A. Rogers, S.-K. Kang. 2021. Physically transient electronic materials and devices. Materials Science and Engineering: R: Reports. 145: 100624. DOI: https://doi.org/10.1016/j.mser.2021.100624
Li, Y., B. Li. 2022. Direct ink writing 3D printing of polydimethylsiloxane-based soft and composite materials: a mini review. Oxford Open Materials Science. 2(1): itac008. DOI: https://doi.org/10.1093/oxfmat/itac008
Pinargote, N., A. Smirnov, N. Peretyagin, A. Seleznev, P. Peretyagin. 2020. Direct Ink Writing Technology (3D Printing) of Graphene-Based Ceramic Nanocomposites: A Review. Nanomaterials (Basel). 10(7). DOI: https://doi.org/10.3390/nano10071300
Fatimah, S., R. Ragadhita, D. F. A. Husaeni, A. B. D. Nandiyanto. 2022. How to Calculate Crystallite Size from X-Ray Diffraction (XRD) using Scherrer Method. ASEAN Journal of Science and Engineering. 2(1). DOI: https://doi.org/10.17509/ajse.v2i1.37647
Saowadee, N., K. Agersted, J. R. Bowen. 2017. Lattice constant measurement from electron backscatter diffraction patterns. Journal of Microscopy. 266(2): 200-210. DOI: https://doi.org/10.1111/jmi.12529
Oliver, W. C., G. M. Pharr. 1992. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research. 7(6): 1564-1583. DOI: https://doi.org/10.1557/JMR.1992.1564
Tsai, J.-L., J.-F. Tu. 2010. Characterizing mechanical properties of graphite using molecular dynamics simulation. Materials & Design. 31(1): 194-199. DOI: https://doi.org/10.1016/j.matdes.2009.06.032
Winkler, C., U. Schwarz, J. Konnerth. 2018. Effect of thermal postcuring on the micro- and macromechanical properties of polyurethane for wood bonding. Applied Adhesion Science. 6(1): 5. DOI: https://doi.org/10.1186/s40563-018-0106-3
L. Gray, Electricity in Physical Science. Gareth Stevens Publishing LLLP: 2011.
Nur Munirah, A., M. R. Anika Zafiah, A. M.F.L. 2015. Synergistic influence of graphite on biopolymer composites properties. Jurnal Teknologi. 77(32). DOI: https://doi.org/10.11113/jt.v77.6981
Popova, A. N. 2017. Crystallographic analysis of graphite by X-Ray diffraction. Coke and Chemistry, 60(9). DOI: https://doi.org/10.3103/S1068364X17090058
Aguilar-Bolados, H., M. Yazdani-Pedram, A. Contreras-Cid, M. A. López-Manchado, A. May-Pat, F. Avilés. 2017. Influence of the morphology of carbon nanostructures on the piezoresistivity of hybrid natural rubber nanocomposites. Composites Part B: Engineering. 109: 147-154. DOI: https://doi.org/10.1016/j.compositesb.2016.10.057
Rachmanto, M. K. A., L. T. Wibowo, T. Paramitha, A. Purwanto. 2021. Evaluation of Anode Composition in Lithium-Ion Batteries. Journal of Physics: Conference Series. 1858(1): 012035. DOI: https://doi.org/10.1088/1742-6596/1858/1/012035
Choi, J. S., H.-K. Lee, S. J. An. 2015. Synthesis of a graphene oxide/sodium silicate nanocomposite using sodium silicate solution. Royal Society of Chemistry Advances. 5(48): 38742-38747. DOI: https://doi.org/10.1039/C5RA05241F
Kahlenberg, V. 2010. Structural Chemistry of Anhydrous Sodium Silicates–A Review. CHIMIA. 64 (10): 716. DOI: https://doi.org/10.2533/chimia.2010.716
Li, Z. Q., C. J. Lu, Z. P. Xia, Y. Zhou, Z. Luo. 2007. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon. 45 (8): 1686-1695. DOI: https://doi.org/10.1016/j.carbon.2007.03.038
Barnakov, C. N., G. P. Khokhlova, A. N. Popova, S. A. Sozinov, Z. R. Ismagilov. 2015. XRD Characterization of the Structure of Graphites and Carbon Materials Obtained by the Low-Temperature Graphitization of Coal Tar Pitch. Eurasian Chemico-Technological Journal. 17(2): 87-93. DOI: https://doi.org/10.18321/ectj198
Salah, N., A. M. Alfawzan, A. Saeed, A. Alshahrie, W. Allafi. 2019. Effective reinforcements for thermoplastics based on carbon nanotubes of oil fly ash. Scientific Report. 9(1): 20288. DOI: https://doi.org/10.1038/s41598-019-56777-1.
Thakur, A. S., V. Srivastava, R. Vaish. 2024. Pencil-drawn Interdigitated Capacitive Sensors on Wood Substrate. Advanced Sensor and Energy Materials. 100103. DOI: https://doi.org/10.1016/j.asems.2024.100103
Duan, Y., J. Wu, S. He, B. Su, Z. Li, Y. Wang. 2022. Bioinspired Spinosum Capacitive Pressure Sensor Based on CNT/PDMS nanocomposites for Broad Range and High Sensitivity. Nanomaterials. 12: 3265. DOI: https://doi.org/ 10.3390/nano12193265.
Qiu, J., X. Guo, R. Chu, S. Wang, W. Zeng, L. Qu, Y. Zhao, F. Yan, G. Xing. 2019. Rapid response, low detection limit, and high sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin. ACS Applied Materials & Interfaces 11(43): 40716–40725. DOI: https://doi.org/10.1021/acsami.9b16511.













