Synthesis and Emission Properties of meso-Substituted Porphyrins


  • Tan Ke Xin Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Hendrik O. Lintang Ibnu Sina Institute for Fundamental Science Studies, Building N31, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Abdul Rahman Tamuri Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Salasiah Endud Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Bakri Bakar Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia



Porphyrins, fluorenyl, energy and electron transfer, conjugating system


Discovering of various organic dyes including porphyrins have attracted considerable attention to mimic the energy and electron transfer process for the artificial photosynthetic model systems which can be applied in developing optoelectronic devices. The accessibility on tailoring porphyrin properties makes them a good candidate to, be developed as the red light emitting materials for these applications. Thus, symmetrical and unsymmetrical molecular models of porphyrins with appended fluorenyl components and extended π electrons conjugated system were synthesized towards increasing the efficiency of energy and electron transfer. In the photophysical studies, the emission spectra proposed the evidence of energy transfer of appended fluorenyl arms into the porphyrin macrocyclic whereas the extension of conjugating system in porphyrins exhibits lower absorption energy and intensified the red fluorescent properties.


Smith, K. M. 1975. Porphyrins and Metalloporphyrins. Milgrom, L. R. 1997. (Ed.). The Colours of Life. New York: Oxford University Press, Elsevier, Amsterdam. 3–28.

Mathias, O. S., Marijana, F., Eleni, G. A. N., Werner, J. B., Monika, Z., Oliver, B. l., and Eimhin. 2007. M. N. M. Nonliner Optical Properties of Porphyrins. Advanced Materials. 19: 2737–2774.

Effenberger, F., Schlosser, H., Bauerle, P., Maier, S., Port, H., and Wolf, H. C. 1988. Angewandte Chemie International Edition. 27: 281–284.

Wagner, R. W., Johnson, T. E., and Lindsey, J. S. 1996. Soluble Synthetic Multiporphyrin Arrays. 1. Modular Design and Synthesis Journal of the American Chemical Society. 118: 11166–11180.

Hamblin, M. R. and Mróz, P. 2008. Advances in Photodynamic Therapy Basic, Translation and Clinical. USA: Artech House.1–37.

Franco, S., Claudio, C., Anna, P., Elisabetta, I., and Enzo, A. 2006. Photophysical Properties of Metal-mediated Assemblies of Porphyrins. Coordination Chemistry Reviews. 250: 1471–1496.

Bernard, M. 1992. Metalloporphyrins as Versatile Catalysts for Oxidation Reactions and Oxidative DNA Cleavage. Chemical Review. 92: 1411–1456.

Andrew, C. B., and Anthony, H. 2008. Artificial Photosynthesis. Materials Today. 11(12): 26–34.

Wang, C. L., Chang, Y. C., Lan, C. M., Lo, C.F., Eric, W. G. and Lin, C. Y. 2011. Enhanced Light Harvesting with π-conjugated Cyclic Aromatic Hydrocarbons for Porphyrin-Sensitized Solar Cells. Journal of Energy and Environmental Science. 4: 1788–1795.

Shino, O. and Jean, L. B. 2009. Porphyrin dimers: A Theoretical Understanding of The Impact of Electronic Coupling Strength on The Two-Photon Absorption Properties. Journal of Materials Chemistry. 19: 7545–7550.

Raymond, C. K., Scott, S., Timur, D., Marc, B., Stephen, R. F., and Mark, E. T. 1999. Efficient, Saturated Red Organic Light Emitting Devices Based on Phosphorescent Platinum (II) Porphyrins. Chemistry of Materials. 11: 3709–3713.

Akira Tsuboyama,Hironobu Iwawaki,Manabu Furugori, Taihei Mukaide, Jun Kamatani, Satoshi Igawa,Takashi Moriyama,Seishi Miura,Takao Takiguchi, Shinjiro Okada, Mikio Hoshino,and Kazunori Ueno. 2003. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode. Journal of the American Chemical Society. 125: 12971–12979.

Samuel, D., Christine, O. P. 2009. Fluorenyl Dendrimer Porphyrins: Synthesis and Photophysical Properties. Tetrahedron. 65: 10693–10700.

Samuel, D., Christine, O. P., Valeria, F., Massimo, C. and Gareth Williams, J. A. 2010. Platinum and Palladium Complexes of Fluorenyl Porphyrins as Red Phosphors for Light-emitting Devices. New Journal of Chemistry. 35: 438–444.

Samuel, D., Areej, M., Gilles, A., Frederic, P., Olivier, M., Mireille, B. D., and Christine O. P. 2012. Synthesis of New Luminescent Supramolecular Assemblies from Fluorenyl Porphyrins and Polypyridyl Isocyanurate-Based Spacers. Tetrahedron. 68: 98–105.

Christine, O. P and Gérard S. 2006. Porphyrins with Fluorenyl and Fluorenone. Pendant Arms as Red-light-emitting Devices. Comptes Rendus Chimie. 9: 1277–1286.

Jonathan, R. S., Richard, T. F., Kenneth, R. G., Yang, Y. X., John, R. R., Xue, J. G., and Kirk, S. S. 2009. Efficient Near-Infrared Polymer and Organic Light-Emitting Diodes Based on Electrophosphorescence from (Tetraphenyl-tetranaphtho[2,3] porphyrin)-platinum(II). Applied Materials and Interfaces. 1: 274–278.

Jonathan, R. S., Abigail, H. S., Anand, P., Ion, G., John, R. R., and Kirk, S. S. 2011. Photophysical Properties of Near-Infrared Phosphorescent π-Extended Platinum Porphyrins. Chemistry of Materials. 23: 5296–5304.

Che, C. M, Hou, Y. J.,Michael, C. W. C., Guo, J. H., Liu, Y., and Wang, Y. 2003. [meso-Tetrakis(pentafluorophenyl)porphyrinato] platinum(II) as An Efficient, Oxidation-Resistant Red Phosphor: Spectroscopic Properties And Applications In Organic Light-Emitting Diodes. Journal of Materials Chemistry. 13: 1363–1366.

Adler, D. A., Longo, R. F., Finarelli, J. D., Goldmacher, J., Assour, J., Korsakoff, L. 1967. A Simplified Synthesis for Meso-Tetraphenylporphine. The Journal of Organic Chemistry. 32(2): 476.

Jonathan, S. L. 2010. Synthethic Routes to meso-Patterned Porphyrins. Accounts of Chemical Research. 43(2): 300–311.

Rao, P. D., Savithri, D., Banjamin, J. L., and Lindsey, J. S. 2000. Rational Syntheses of Porphyrins Bearing up to Four Different Meso Substituents. The Journal of Organic Chemistry. 65(22): 7323–7344.

Hao, E.H., Fronczek, F.R., and Vicente, M.G.H. 2006. Carborane Functionalized Pyrroles and Porphyrins Via The Suzuki Crosscoupling Reaction. Chemical Communications. 4900–4902.

Philipe, J., Morin, T., Ali, H., Johan, E., and Lier, V. 2006. Palladium catalyzed Coupling Reactions of Cationic Porphyrins With Organoboranes (Suzuki) and Alkenes (Heck). Tetrahedron Letters. 47: 3043–3046.

Aoife, R., Andreas, G., Romain, P., Monica, P., Marijana, F., Oliver, B. L., Frances B. and Mathias, O. S. 2011. Porphyrin Dimers and Arrays. European Journal of Organic Chemistry. 5817–5844.

Yu, L. H. and Lindsey, J. S. 2001. Rational Syntheses of Cyclic Hexameric Porphyrin Arrays for Studies of Self-Assembling Light-Harvesting Systems. The Journal of Organic Chemistry. 66(22): 7402–7419.

Harvey, P. D. 2003. Recent Advances in Free and Metalated Multiporphyrin Assemblieas and Arrays; A Photophysical Behavior and Energy Transfer Perspective. 18: 64–70.

Kadish, K. M., Kevin, M. S., and Roger G. (Eds.). 2003. The Porphyrin Handbook. USA: Elsevier Science.

Gouterman, M. 1961. Spectra of Porphyrins. Journal of Molecular Spectroscopy. 6: 138.

Victoria Martı′nez-Dı′az, M., Torre, G. de la and Toma′s, T. .2010. Lighting Porphyrins and Phthalocyanines for Molecular Photovoltaics. Chemical Communications. 46: 7090–7108.

Ayyappanpillai, A., Vakayil, K. P., and Chakkooth, V. 2008. Organogels as Scaffolds for Excitation Energy Transfer and Light Harvesting. Chemical Society Reviews. 37: 109–122.

Wong, W. Y., and Ho, C. l. 2009. Functional Metallophosphors For Effective Charge Carrier Injection/Transport: New Robust OLED Materials With Emerging Applications. Journal of Materials Chemistry.19: 4457–4482.

Jodev, K. L., Savithri, D., Masahiko, T., Arounaguiry, A. and Jonathan, S. L. 2003. A Scalable Synthesis of Meso-Substitited Dipyrromethanes. Organic Process Research &Development. 7: 799–812.

Lee, C. H., and Lindsey, J. S. 1994. One-Flask Synthesis of Meso-Substituted Dipyrromethanes and Their Application in Synthesis of Trans-Substituted Porphyrin Building Blocks. Tetrahedron. 50(39): 11427–11440.

Kamaljit, S., Behal, S., and Maninder,S. H. 2005. Efficient and Versatile Single Pot Approach to Dipyrromethanes and Bis(heterocycle)methanes. Tetrahedron. 61: 6614–6622.

Rothemund, P. 1936. Synthesis of Porphin. Journal of the American Chemical Society. 58: 625–627.

Christine, O. P., Joelle, R. B., Gérard, S., Julien, L., and Bergamini, J. F. 2007. Selective Anodic Preparation of 1D or 2D Electroactive Deposits from 5,15-bis-(9H-fluoren-2-yl)-10,20-diphenylporphyrins. Journal of Electroanalytical Chemistry. 606: 103–116.

Stefano, B., Enrico. C., Loredana, B., Roberto, M., Elena, M., Marzia, G., Ester, P. and Paola, G. 2006. Comparison between 5,10,15,20-Tetraaryl- and 5,15-Diarylporphyrins as Photosensitizers: Synthesis, Photodynamic Activity, and Quantitative Structure-Activity Relationship Modeling. Journal of Medicinal Chemistry.49: 3293–3304.

Wang, S. and Gu, Y. H. 2009. Synthesis, Structure Characterization of New Porphyrin Derivatives and Studies on Their Electrochemical Properties. Youji Huaxue. 29(11): 1762–1767.

Berezin, B. D., Karmanova, T. V., Gromova, T. V., Syrbu, S. A. and Semeikin, A. S. 2002. Study of Extra Coordination of Bromo-Substituted Porphyrins to Organic Bases. Russian Journal of Coordination Chemistry (Translation of Koordinatsionnaya Khimiya). 28(9): 608–613.




How to Cite

Ke Xin, T., O. Lintang, H., Tamuri, A. R., Endud, S., & Bakar, M. B. (2014). Synthesis and Emission Properties of meso-Substituted Porphyrins. Jurnal Teknologi, 71(1).



Science and Engineering