EFFECT OF POLYVINYLPYRROLIDONE AND FABRICATION PARAMETERS ON ELECTROSPUN TITANIUM OXIDE NANOFIBRES’ DIAMETER

Authors

  • Zi Sheng Tang Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Nurmin Bolong Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Ismail Saad Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Rosdianah Ramli Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Franklin Tiam Yang Lim Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.10047

Keywords:

Electrospinning, titanium oxide, nanofibres, parameters

Abstract

Electrospinning is the most versatile and cost effective technique to produce titanium oxide (TiO2) nanofibres. An ethanolic solution containing titanium tetraisopropoxide, polyvinylpyrrolidone and acetic acid was loaded in the syringe to produce TiO2 nanofibres. In the present work, a custom-made electrospinning system was developed to investigate the fabrication and solution effects to the diameter of electrospun TiO2 fibres. The fabrication parameters were applied voltage (kV), flow rate (ml/hr) and tip to collector distance (cm). In addition, the effect of varying the weightage of polymer carrier on electrospun TiO2 nanofibres was investigated. The surface morphology of the fibres was examined with scanning electron microscope (SEM) and further analysed with the aid of JMicroVision. The significance of the influencing parameters was observed from high to low order as PVP content > tip to collector distance > applied voltage > flow rate. In conclusion, the parameters of applied voltage (15 kV), flow rate (1 ml/hr), tip to collector distance (10 cm) and PVP content (6 wt. %) are able to produce uniform TiO2 nanofibres.

References

Jose, R., Thavasi, V. & Ramakrishna, S. 2009. Metal Oxides For Dye-Sensitized Solar Cells. Journal of American Ceramic Society. 92(2): 289-30.

Cao, Y., Dong, Y. J., Feng, H. L., Chen, H. Y. & Kuang, D. B. 2016. Electrospun TiO2 Nanofiber Based Hierarchical Photoanode For Efficiency Dye0sensitized Solar Cells. Electrochimica Acta. 189: 259-264.

Jung, W. H., Kwak, N. S., Hwang, T. S. & Yi, K. B. 2012. Preparation Of Highly Porous TiO2 Nanofibers For Dye-Sensitized Solar Cells (DSSCs) By Electro-Spinning. Applied Surface Science. 261:343-352.

Nayak, R., Padhye, R., Kyratzis, I. L., Truong, Y. B. & Arnold, L. 2011. Recent Advances In Nanofibre Fabrication Techniques. Textile Research Journal. 82(2): 129-147.

Zhao, X. G., Park, J. Y. & Gu, H. B. 2014. Addition Of Electrospun Tio2 Nanofibers For Improving The Charge Capabilities Of Polymer Electrolyte-Based DSSCs. Journal of The Electrochemical Society. 161(9): H517-H522.

Xu, D., Li, J. M., Yu, Y. X. & Li, J. J. 2012. From Titanates To TiO2 Nanostructures: Controllable Synthesis, Growth Mechanism, And Applications. Science China Chemistry. 55(11): 2334-2345.

Tikekar, N. M. & Lannutti, J. J. 2012. Effects Of Humidity On Titania-Based Polyvinylpyrrolidone (PVP) Electrospun Fibers. Ceramics International. 38: 4057-4064.

Jin, E. M., Zhao, X. G., Park, J. Y. & Gu, H. B. 2012. Enhancement Of Photoelectric Performance Of Dye-Sensitized Solar Cells Using Ag-doped TiO2 Nanofibers In TiO2 Film As Electrode. Nanoscale Research Letters. 7(97): 1-5.

Reneker, D. H. & Chun, I. 1996. Nanometre Diameter Fibres Of Polymer, Produced By Electrospinning. Nanotechnology. 7: 216-223.

Kumar, P. R., Khan, N., Vivekanandhan, S., Satyanarayana, N., Mohanty, A. K. & Misra, M. 2012. Nanofibers: Effective Generation By Electrospinning And Their Applications. Journal of Nanoscience and Nanotechnology. 12: 1-25.

Sarlak, N., Nejad, M. A. F., Shakhesi, S. & Shabani, K. 2010. Effects Of Electrospinning On Titanium Dioxide Nanofibers Diameter And Morphology: An Investigation By Box-Wilson Central Composite Design (CCD). Chemical Engineering Journal. 210: 410-416.

Heikkilä, P. & Harlin, A. 2008. Parameter Study Of Electrospinning Of Polyamide-6. European Polymer Journal. 44: 3067-3079.

Caratão, B., Carneiro, E., Sá, P., Almeida, B. & Carvalho, S. 2014. Properties Of Electrospun TiO2 Nanofibers. Journal of Nanotechnology. 2014(Article ID 472312): 1-5.

Deitzel, J. M., Kleinmeyer, J., Harris, D. & Tan, N. C. B. 2001. The Effect Of Processing Variables On The Morphology Of Electrospun Nanofibers And Textiles. Polymer. 42: 261-272.

Lim, M. M. & Sultana, N. 2014. Effects Of Parameters On The Fabrication Of Poly(caprolactone) Electrospun Membrane Using Electrospinning Technique. Proceedings of 2014 IEEE Conference on Biomedical Engineering and Sciences. 8-10 December 2014, Miri, Sarawak, Malaysia. 251-255.

Lu, Y., Li, Y., Zhang, S., Xu, G., Fu, K., Lee, H. & Zhang, X. 2013. Parameter Study And Characterization For Polyacrylonitrile Nanofibers Fabricated Via Centrifugal Spinning Process. European Polymer Journal. 49: 3834-3845.

Bhardwaj N. & Kundu, S. C. 2010. Electrospinning: A Fascinating Fiber Fabrication Technique. Biotechnology Advances. 28: 325-347.

Huan, S., Liu, G., Han, G., Cheng, W., Fu, Z., Wu, Q. & Wang Q. 2015. Effect Of Experimental Parameters On Morphological, Mechanical And Hydrophobic Properties Of Electrospun Polystyrene Fibers. Materials. 2015(8): 2718-2734.

Tekmen, C., Suslu, A. & Coen, U. 2008. Titania Nanofibers Prepared By Electrospinning. Materials Letters. 62: 4470-4472.

Chowdhury, M. & Stylios, G. 2010. Effect Of Experimental Parameters On Morphology Of Electrospun Nylon 6 Nanofibres. International Journal of Basic & Applied Sciences IJBAS-IJENS. 10(6): 116-131.

Downloads

Published

2016-11-28

Issue

Section

Science and Engineering

How to Cite

EFFECT OF POLYVINYLPYRROLIDONE AND FABRICATION PARAMETERS ON ELECTROSPUN TITANIUM OXIDE NANOFIBRES’ DIAMETER. (2016). Jurnal Teknologi, 78(12). https://doi.org/10.11113/jt.v78.10047