MULTI OBJECTIVE MACHINING ESTIMATION MODEL USING ORTHOGONAL AND NEURAL NETWORK
DOI:
https://doi.org/10.11113/jt.v78.10116Keywords:
Orthogonal, neural network, multi objective, estimation model, electrical discharge machiningAbstract
Much hard work has been done to model the machining operations using the neural network (NN). However, the selection of suitable neural network model in machining optimization area especially in multi objective area is unsupervised and resulted in pointless trials. Thus, a combination of Taguchi orthogonal and NN modeling approach is tested on two types of electrical discharge machining (EDM) operations; Cobalt Bonded Tungsten Carbide (WC-Co) and Inconel 718 to observe the efficiency of proposed approach on different numbers of objectives. WC-Co EDM considered two objective functions and Inconel 718 EDM considered four objective functions. It is found that one hidden layer 4-8-2 layer recurrent neural network (LRNN) is the best estimation model for WC-Co machining and one hidden layer 5-14-4 cascade feed forward back propagation (CFBP) is the best estimation model for Inconel 718 EDM. The results are compared with trial-error approach and it is proven that the proposed modeling approach is able to improve the machining performances and works efficiently on two-objective problems.
References
Ho K. H. and Newman S. T. 2003. State Of The Art Electrical Discharge Machining (EDM). International Journal of Machine Tools and Manufacture. 43: 1287-1300.
Ho, K. H., Newman, S. T., Rahimifard, S. and Allen, R. D. 2004. State Of The Art In Wire Electrical Discharge Machining (WEDM). International Journal of Machine Tools and Manufacture. 44, 1247-1259.
Huang, J. T. and Liao, Y. S. 2003. Optimization Of Machining Parameters Of Wire-EDM Based On Grey Relational And Statistical Analyses. International Journal of Production Research. 41: 1707-1720.
Yusoff, Y., Zain, A. M. and Haron, H. 2016. Experimental Study Of Genetic Algorithm Optimization On WC/Co Material Machining. Journal of Advanced Research in Materials Science. 21: 14-26.
Deris, A. M., Zain, A. M. and Sallehuddin, R. 2011. Overview Of Support Vector Machine In Modeling Machining Performances. Procedia Engineering. 24: 308-312.
Mohd Adnan, M. R. H., Sarkheyli, A., Mohd Zain, A. and Haron, H. 2013. Fuzzy Logic For Modeling Machining Process: A Review. Artificial Intelligence Review. 43: 345-379.
Padhee, S., Nayak, N., Panda, S. K., Dhal, P. R. and Mahapatra, S. S. 2012. Multi-Objective Parametric Optimization Of Powder Mixed Electro-Discharge Machining Using Response Surface Methodology And Non-Dominated Sorting Genetic Algorithm. Sadhana - Academy Proceedings in Engineering Sciences. 37: 223-240.
Zain, A. M., Haron, H., Qasem, S. N. and Sharif, S. 2012. Regression and ANN Models For Estimating Minimum Value Of Machining Performance. Applied Mathematical Modelling. 36: 1477-1492.
Kuriakose, S. and Shunmugam, M. S. 2005. Multi-Objective Optimization Of Wire-Electro Discharge Machining Process By Non-Dominated Sorting Genetic Algorithm. Journal of Materials Processing Technology. 170: 133-141.
Palanikumar, K., Latha, B., Senthilkumar, V. S. and Karthikeyan, R. 2009. Multiple Performance Optimization In Machining Of GFRP Composites By A Pcd Tool Using Non-Dominated Sorting Genetic Algorithm (NSGA-II). Metals and Materials International. 15: 249-258.
Al-Ghamdi, K. and Taylan, O. 2015. A Comparative Study On Modelling Material Removal Rate By ANFIS And Polynomial Methods In Electrical Discharge Machining Process. Computers & Industrial Engineering. 79: 27-41.
Yusoff, Y., Mohd Zain, A. & Ngadiman, M. S. 2016. Computational Approach for Multi Performances Optimization of EDM. MATEC Web Conf. 78: 01014.
Sadimon, S. and Haron, H. 2015. Neural Network Model for Prediction of Facial Caricature Landmark Configuration using Modified Procrustes Superimposition Method. International Journal of Advances in Soft Computing & Its Applications. 7.
Mohamad, M. and Saman, M. Y. M. 2015. Comparison of Diverse Ensemble Neural Network for Large Data Classification. Int. J. Advance Soft Compu. Appl. 7.
Fu, M., Xu, P., Li, X., Liu, Q., Ye, M. and Zhu, C. 2015. Fast Crowd Density Estimation With Convolutional Neural Networks. Engineering Applications of Artificial Intelligence. 43: 81-88.
Parveen R., N. M., Memon F. A., Zaman S. and Ali M. 2016. A Review and Survey of Artificial Neural Network in Medical Science. Journal of Advanced Research in Computing and Applications. 3: 8-17.
Tsai, K.-M. and Wang, P.-J. 2001. Comparisons Of Neural Network Models On Material Removal Rate In Electrical Discharge Machining. Journal of Materials Processing Technology. 117: 111-124.
Juhr, H., Künanz, K., Nestler, A. and Leitte, G. 2004. Generation Of Parameter Technologies For EDM Die Sinking With Artificial Neural Networks (ANN) And Nonlinear Regression Functi-Ons (NRF). Forschungsergebnis bericht.
Panda, D. K. and Bhoi, R. K. 2005. Artificial Neural Network Prediction of Material Removal Rate in Electro Discharge Machining. Materials and Manufacturing Processes. 20: 645-672.
Assarzadeh, S. and Ghoreishi, M. 2007. Neural-Network-Based Modeling And Optimization Of The Electro-Discharge Machining Process. The International Journal of Advanced Manufacturing Technology. 39: 488-500.
Markopoulos, A. P., Manolakos, D. E. and Vaxevanidis, N. M. 2008. Artificial Neural Network Models For The Prediction Of Surface Roughness In Electrical Discharge Machining. Journal of Intelligent Manufacturing. 19: 283-292.
Patowari, P. K., Saha, P. and Mishra, P. K. 2010. Artificial Neural Network Model In Surface Modification By EDM Using Tungsten–Copper Powder Metallurgy Sintered Electrodes. The International Journal of Advanced Manufacturing Technology. 51: 627-638.
Pradhan, M. K. and Das, R. 2011. Recurrent Neural Network Estimation Of Material Removal Rate In Electrical Discharge Machining Of AISI D2 Tool Steel. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 225: 414-421.
Mahdavinejad, R. A. 2011. Modeling And Optimization Of Electrical Discharge Machining Of Sic Parameters, Using Neural Network And Non-Dominating Sorting Genetic Algorithm (NSGA II). Materials Sciences and Applications. 2: 669.
Bharti, P. S., Maheshwari, S. and Sharma, C. 2012. Multi-Objective Optimization Of Die-Sinking Electric Discharge Machining. 110-116: 1817-1824.
Das, R. and Pradhan, M. K. 2013. ANN Modelling For Surface Roughness In Electrical Discharge Machining: A Comparative Study. International Journal of Service and Computing Oriented Manufacturing. 1: 124-140.
Khan, M. A. R., Rahman, M. M. and Kadirgama, K. 2014. Neural Network Modeling and Analysis for Surface Characteristics in Electrical Discharge Machining. Procedia Engineering. 90: 631-636.
Maity, K. and Mishra, H. 2016. ANN Modelling And Elitist Teaching Learning Approach For Multi-Objective Optimization Of $$upmu $$ μ –EDM. Journal of Intelligent Manufacturing. 1-18.
Joshi, S. N. and Pande, S. S. 2011. Intelligent Process Modeling And Optimization Of Die-Sinking Electric Discharge Machining. Applied Soft Computing. 11: 2743-2755.
Zain, A. M., Haron, H. and Sharif, S. 2009. Review Of ANN Technique For Modeling Surface Roughness Performance Measure In Machining Process. Modelling & Simulation, 2009. AMS'09. Third Asia International Conference. 35-39.
Tsai, K. M. and Wang, P. J. 2001. Predictions On Surface Finish In Electrical Discharge Machining Based Upon Neural Network Models. International Journal of Machine Tools and Manufacture. 41: 1385-1403.
Kanagarajan, D., Karthikeyan, R., Palanikumar, K. & Davim, J. P. 2008. Optimization Of Electrical Discharge Machining Characteristics Of Wc/Co Composites Using Non-Dominated Sorting Genetic Algorithm (Nsga-II). International Journal Of Advanced Manufacturing Technology. 36: 1124-1132.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.