ON THE PERFORMANCE OF STEEL WIRE ROPE AS THE EXTERNAL STRENGTHENING OF RC BEAMS WITH DIFFERENT END-ANCHOR TYPES
DOI:
https://doi.org/10.11113/jt.v80.11588Keywords:
End-anchor, external strengthening, ductility, load-carrying capacity, steel wire ropeAbstract
This work investigated the performance of steel wire rope as an external strengthening for reinforced concrete beams with different end-anchor types. A study is conducted on reinforced concrete beams with the size of 100 mm x 150 mm x 1000 mm, consisting of 1 beam without strengthening (BTP); 1 beam strengthened with 2 steel wire ropes of diameter 6 mm with end-anchor type 1 (BPA1); and 1 beam strengthened with 2 steel wire ropes of diameter 6 mm with end-anchor type 2 (BPA2). It is found that the external strengthening of reinforced concrete beams using steel wire rope has the advantage of better serviceability due to its higher ductility than the beam without strengthening. The load-carrying capacity of reinforced concrete beams, which are externally strengthened with steel wire ropes, shows a significant increase of up to 60%. All specimens meet the minimum ductility requirements; in this case, the strengthening beams have other advantages, i.e. improved performance in preventing brittle failure. In this study, the increased stiffness is associated proportionately with the increased strength. This is supported by previous findings which suggest that the stiffness cannot be completely separated and independent of the strength. The failure in all specimens appeared in the same phases and all specimens experienced flexural failure. The ratios of end-anchor type 1 to end-anchor type 2 were close to 1 for all the parameters studied, which means that both types of end-anchor make an equally good contribution to the performance of steel wire rope.
References
Pusposutarjo, S. 1993. Bencana Angin Topan di Indonesia: Kejadian dan Kesiapan Menghadapinya. Seminar PAU Teknik. Yogyakarta, Indonesia.
Supriyadi, B. 1995. Mengantisipasi Pengaruh Beban Angin Topan Pada Struktur Bangunan Gedung. Seminar Nasional Bahaya Gempa dan Angin Topan Terhadap Struktur Bangunan Gedung. Yogyakarta, Indonesia.
Hosen, M. A., Jumaat, M. Z., Darain, K. M. U, Obaydullah, M. and Islam, A. B. M. S. 2014. Flexural Strengthening of RC Beams with NSM Steel Bars. International Conference on Food, Agriculture and Biology (FAB-2014). Kuala Lumpur, Malaysia. 11-12 June 2014. 8-13.
Haryanto, Y., Gan, B. S., Widyaningrum, A. and Maryoto, A. 2017. Near Surface Bamboo Reinforcement for Flexural Strengthening of Reinforced Concrete Beams. Jurnal Teknologi (Sciences and Engineering). 79(6): 233-240.
Sukrawa, M., Sudarsana, I. K and Dana, I. W. 2011. Perkuatan Pelat Jembatan Dek Baja Dengan Overlay Beton Bertulang. Jurnal Teknik Sipil. 18(3): 207-216.
Raoof, M. and Davies, T. J. 2003. Simple Determination of The Axial Stiffness for Large Diameter Independent Wire Rope Core or Fibre. The Journal of Strain Analysis for Engineering Design. 38(6): 577-586.
Avak, R. and Willie, F. 2005. Experimental Investigations and Modeling of Bond between Round Strand Ropes and Concrete. The 11th International Conference on Fracture (ICF). Turin, Italy.
Kim, S. Y., Yang, K. H., Byun, H. Y. and Ashour, A. F. 2007. Tests of Reinforced Concrete Beams Strengthened with Wire Rope Units. Engineering Structures. 29: 2711-2722.
Yang, K. H., Byun, H. Y. and Ashour, A. F. 2009. Shear Strengthening of Continuous Reinforced Concrete T-Beams Using Wire Rope Units. Engineering Structures. 31: 1154-1165.
Yang, K. H., Kim, G. H. and Yang, H. S. 2011. Shear Behavior of Continuous Reinforced Concrete T-Beams Using Wire Rope as Internal Shear Reinforcement. Construction and Building Materials. 25: 911-918.
Haryanto, Y. 2011. Efektifitas Wire Rope Sebagai Perkuatan Pada Daerah Momen Negatif Balok Beton Bertulang Tampang T. Dinamika Rekayasa. 7(2): 36-42.
Atmajayanti, A. T., Satyarno, I. and Saputra, A. 2013. Pengaruh Penggunaan Wire Rope sebagai Perkuatan Lentur Terhadap Kekuatan dan Daktilitas Balok Beton Bertulang Tampang T. Konferensi Nasional Teknik Sipil 7, Surakarta, Indonesia.
Haryanto, Y., Wariyatno, N. G. and Sudibyo, G H. 2013. Pengaruh Gaya Prategang Awal Terhadap Efektifitas Wire Rope sebagai Perkuatan Daerah Momen Negatif Balok Beton Bertulang Tampang T. Seminar Nasional Teknik Sipil IX. Surabaya, Indonesia.
Haryanto, Y., Gan, B. S. and Maryoto, A. 2017. Wire Rope Flexural Bonded Strengthening System on RC-Beams: A Finite Element Simulation. International Journal of Technology. 8(1): 134-144.
Galuh, D. L. C. 2015. The Effectiveness of the Use of Wire Rope Flexural as The Negative Moment Reinforcement in T-Sectional Reinforced Concrete Beam. International Conference on Quality in Research, Lombok, Indonesia
Sudarsana, I. K. and Widiarsa, I. B. R. 2009. Pengaruh Pemasangan Angker Ujung Terhadap Perilaku Runtuh Balok Beton Bertulang dengan Penambahan Lapis GFRP (Glass Fibre Reinforced Polymer). Jurnal Ilmiah Teknik Sipil. 13(2): 136-148.
Jumaat, M. Z. and Alam, A. 2008. Behaviour of U and L Shaped End Anchored Steel Plate Strengthened Reinforced Concrete Beams. European Journal of Scientific Research. 22(2): 184-196.
Jumaat, M. Z. and Alam, A. 2009. Effects of Intermediate Anchors of End Anchored Carbon Fibre Reinforced Polymer Laminate Flexurally Strengthened Reinforced Concrete Beams. Journal of Applied Sciences. 9(1): 142-148.
Ahmed, E., Sobuz, H. R. and Sutan, N. M. 2011. Flexural Performance of CFRP Strengthened RC Beams with Different Degrees of Strengthening Schemes. International Journal of the Physical Sciences. 6(9): 2229-2238.
Maryoto, A. 2015. Studi Komparasi Antara Angkur dari Baja dan Kayu untuk Prategang pada Beton Bertulangan Limbah Ban. Dinamika Rekayasa. 11(2): 76-79.
Apeh, J. A. and Okoli, O. G. 2016. Evaluation of Ductility Index of Concrete Beams Reinforced with Rebars Milled from Scrap Metals. Concrete Research Letters. 7(2): 56-68.
Bsisu, K. A., Hunaiti, Y. and Younes, R. 2012. Flexural Ductility Behavior ff Strengthened Reinforced Concrete Beams Using Steel And CFRP Plates. Jordan Journal of Civil Engineering. 6(3): 304-312.
Ashour, S. A. 2000. Effect of Compressive Strength and Tensile Reinforcement Ratio on Flexural Behavior of High-Strength Concrete Beams. Engineering Structures. 22(5): 413-423.
Rashid, M. A. and Mansur, M. A. 2005. Reinforced High-Strength Concrete Beams in Flexure. ACI Structural Journal. 102(3): 462-417.
Ho, J. C. M., Kwan, A. K. H. and Pam, H. J. 2004. Minimum Flexural Ductility Design of High-Strength Concrete Beams. Magazine of Concrete Research. 56(1): 13-22.
Kwan, A. K. H., Shau, S. L. and Au, F. T. K. 2006. Improving Flexural Ductility of High-Strength Concrete Beams. Proceedings of the Institution of Civil Engineers: Structures and Buildings. 159(6): 339-347.
Priestley, M. J. N. 2003. Myths and Fallacies in Earthquake Engineering, Revisited. The 9th Mallet Milne Lecture. Pavia, Italy.
Pique, R. J. and Burgos, M. 2008. Effective Rigidity of Reinforced Concrete Elements in Seismic Analysis and Design. The 14th World Conference on Earthquake Engineering. Beijing, China.
Lu, M. and Shi, Q. 2007. The Bend Stiffness of Crane Beam Strengthened with CFRP Under Monotonic and Fatigue Load Condition. International Journal of Nonlinear Science. 4(1): 44-51.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.