CRYSTAL ENGINEERING OF QUERCETIN BY LIQUID ASSISTED GRINDING METHOD

Authors

  • Umi Athiyah Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Putu Andika Kusuma Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Tutik Tutik Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Maria L. A. D. Lestari Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Dewi Isadiartuti Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Diajeng Putri Paramita Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Dwi Setyawan Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia http://orcid.org/0000-0001-8009-6054

DOI:

https://doi.org/10.11113/jt.v81.12639

Keywords:

Cocrystal, quercetin, liquid assisted grinding, characterization, solubilityCocrystal, solubility

Abstract

Quercetin has been proposed to exhibit numerous pharmacological benefits yet suffer low bioavailability due to the extremely low solubility. A research to study the impact of cocrystallization of quercetin with succinic acid on the solubility and dissolution profile has been performed. Cocrystallization in molar stoichiometry of 1:1 was carried out via liquid assisted grinding with methanol in ball milling apparatus. Cocrystal formation was identified by hot stage microscopy (HSM) at first, then cocrystal phase was characterized using differential thermal analysis (DTA), powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), and fourier-transform infrared (FT-IR) spectroscopy. Solubility and dissolution test were conducted as well. DSC thermogram exhibits new endothermic peak at 280.32°C representing the melting point of cocrystal phase alongside with endothermic point of pure compounds. Powder X-ray diffractograms show new diffraction peaks on behalf of cocrystal formation at 2θ=8.92, 9.88, 13.04, 29.78, 35.35°. FT-IR spectroscopy reveals band shifting in –OH group region. On SEM photographs, one can observe crystal habit of succinic acid being covered by crystal with different habit. This indicates that quercetin interacts with succinic acid only on the surfaces and causes imperfect formation of cocrystal phase. Cocrystallization quercetin improves solubility by 1.62 times higher and dissolution rate by 1.25 higher than pure quercetin (one-way ANOVA, p < 0.05).

Author Biography

  • Dwi Setyawan, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
    Department of Pharmaceutics

References

Vishweshwar, P., McMahon, J. A., Bis, J. A., and Zaworotko, M. J. 2006. Pharmaceutical Co-Crystals. Journal of Pharmaceutical Sciences. 95(3): 499-516.

DOI: http://dx.doi.org/10.1002/jps.20578.

Shan, N. and Zaworotko, M. J. 2010. Polymorphic Crystal Forms and Cocrystals in Drug Delivery (Crystal Engineering). In Burger’s Medicinal Chemistry, Drug Discovery, and Development 7th Edition. 187-218.

DOI: https://doi.org/10.1002/0471266949.bmc156.

Kothur, R. R., Swetha, A. S., and Bondili, N. P. 2012. An Outline of Cocrystal Engineering of Pharmaceutical Co-crystals and Applications: A Review. International Journal of Pharmaceutical Research and Development. 4(08): 084-092.

Schultheiss, N. and Newman, A. 2009. Pharmaceutical Cocrystals and Their Physicochemical Properties. Crystal Growth & Design. 9(6): 2950-2967.

DOI: http://dx.doi.org/10.1021/cg900129f.

Thakuria, R., Delori, A., Jones, W., Lipert, M. P., Roy, L., and Rodríguez-Hornedo,N. 2013. Pharmaceutical Cocrystals and Poorly Soluble Drugs. International Journal of Pharmaceutics. 453: 101-125.

DOI: http://dx.doi.org/10.1016/j.ijpharm.2012.10.043.

Douroumis, D., Ross, S. A., and Nokhodchi, A. 2017. Advanced Methodologies for Cocrystal Synthesis. Advanced Drug Delivery Reviews.

DOI: http://dx.doi.org/10.1016/j.addr.2017.07.008.

Trask, A. V. and Jones, W. 2005. Crystal Engineering of Organic Cocrystals by the Solid-State Grinding Approach. Topics in Current Chemistry. 254: 41-70.

DOI: http://dx.doi.org/10.1007/b100995.

FriÅ¡Äić, T., Childs, S. L., Rizvi S. A. A., and Jones, W. 2009. The Role of Solvent in Mechanochemical and Sonochemical Cocrystal Formation: A Solubilty-Based Approach for Predicting Cocrystallization Outcome. Crystal Engineering Communication.11: 418-426.

DOI: http://dx.doi.org/10.1039/b815174a.

Maalik, A., Khan, F. A., Mumtaz, A., Mehmood, A., Azhar, S., Atif, M., Karim, S., Altaf, Y., and Tarig, I. 2014. Pharmacological Applications of Quercetin and Its Derivatives: A Short Review. Tropical Journal of Pharmaceutical Research. 13(9): 1561-1566.

DOI: http://dx.doi.org/10.4314/tjpr.v13i9.26.

Nguyen, T. T. H., Yu, S. H., Kim, J., An, E., Hwang, K., Park, J. S., and Kim, D. 2015. Enhancement of Quercetin Water Solubility with Steviol Glucosides and the Studies of Biological Properties. Functional Foods in Health and Disease. 5(12): 437-449.

Smith, A. J., Kavuru, P., Wojtas, L., Zaworotko, M. J., and Shytle, D. 2011. Cocrystals of Quercetin with Improved Solubility and Oral Bioavailability. Molecular Pharmaceutics. 8: 1867-1876.

DOI: http://dx.doi.org/10.1021/mp200209j.

Vasisht, K., Chadha, K., Karan, M., Bhalla, Y., Jena, A., and Chadha R. 2016. Enhancing Biopharmaceutical Parameters of Bioflavonoid Quercetin by Cocrystallization. Cocrystal Engineering Communication.

DOI: http://dx.doi.org/10.1039/C5CE01899D.

Veverka, M., Dubaj, T., GalloviÄ, J., Jorík, V., Veverková, E., Danihelová, M., And Å imon P. 2014. Cocrystals of Quercetin: Synthesis, Characterization, and Screening of Biological Activity. Monatshefte fue Chemie.

DOI: http://dx.doi.org/10.1007/s00706-014-1314-6.

Setyawan, D., Oktavia, I. P., Farizka, R., and Sari, R. 2017. Physicochemical Characterization and In Vitro Dissolution Test of Quercetin-Succinic Acid Co-crystals Prepared Using Solvent Evaporation. Turkish Journal of Pharmaceutical Sciences. 14(3): 280-284.

DOI: http://dx.doi.org/10.4274/tjps.16362.

Ullah, M., Hussain, I., and Sun, C. C. 2016. The Development of Carbamazepine-succinic Acid Cocrystal Tablet Formulations with Improved in Vitro and in Vivo Performance. Drug Development and Industrial Pharmacy.

DOI: http://dx.doi.org/10.3109/03639045.2015.1096281.

Khristi, A. P., Soni, T., and Suhagia, B. N. 2015. Development, Characterization and Evaluation of Sildenafil Aspirin Co-crystals. Indo American Journal of Pharmaceutical Research. 5(07): 2700-2708.

Cysewski, P. 2017. In Silico Screening of Dicarboxylic Acids for Cocrystallization with Phenylpiperazine Derivatives Based On Both Cocrysttalization Propensity and Solubility Advantage. J Mol Model. 23: 136-146.

DOI: http://dx.doi.org/10.1007/s00894-017-3287-y.

Davis, R. E., Lorimer, K. A., Wilkowski M. A., Rivers, J. H., Wheeler, K. A., and Bowers, J. 2004. Studies of Phase Relationships in Cocrystal Systems. ACA Transactions. 39: 41-61.

Zaini, E., Halim, A., Soewandhi, S. N., Setyawan, D. 2011. Peningkatan Laju Pelarutan Trimetoprim Melalui Metode Ko-kristalisasi dengan Nikotinamida. Jurnal Farmasi Indonesia. 5(4): 205-212.

Setyawan, D., Sari, R., Yusuf, H., and Primaharinastiti, R. 2014. Preparation and Characterization of Artesunate-Nicotinamide Cocrystal by Solvent Evaporation and Slurry Method. Asian Journal of Pharmaceutical and Clinical Research. 7(1): 62-65.

Lin, H. L., Wu, T. K., and Lin, S. Y. 2014. Screening and Characterization of Cocrystal Formation of Metaxalone with Short-chain Dicarboxylic Acids Induced by Solvent-Assisted Grinding Approach. Thermochimica Acta. 575: 313-321.

DOI: http://dx.doi.org/10.1016/j.tca.2013.10.029.

Putra, O.D., Nugrahani, I., Ibrahim, S., dan Uekusa, H. 2012. Pembentukan Padatan Semi Kristalin dan Ko-kristal Parasetamol. Jurnal Matematika & Sains. 17(2): 83-88.

Scalia, S., Haghi, M., Losi, V., Trotta, V., Young, P.M., and Traini, D. 2013. Quercetin Solid Lipid Microparticles: A Flavonoid for Inhalation Lung Delivery. European Journal of Pharmaceutical Sciences. 49(2): 278-285.

DOI: http://dx.doi.org/10.1016/j.ejps.2013.03.009.

Kakran, M., Sahoo, N. G., and Li, L. 2011. Dissolution Enhancement of Quercetin through Nanofabrication, Complexation, and Solid Dispersion. Colloids and Surfaces B: Biointerfaces. 88(1): 121-130.

DOI: http://dx.doi.org/10.1016/j.colsurfb.2011.06.020.

Sun, C. C. 2013. Cocrystallization for Successful Drug Delivery. Expert Opinion on Drug Delivery. 10(2): 201-213.

DOI: https://doi.org/10.1517/17425247.2013.747508.

FriÅ¡Äić, T. and Jones, W. 2009. Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding. Crystal Growth & Design. 9(3): 1621-1637.

DOI: http://dx.doi.org/10.1021/cg800764n.

Momic, T., Savic, J., Cernigoj, U., Trebshe, P., and Vasic, V. 2007. Protolytic Equilibria and Photodegradation of Quercetin in Aqueous Solution. Collection of Czechoslovak Chemical Communications. 72(11): 1447-1460.

DOI: http://dx.doi.org/10.1135/cccc20071447.

Setyawan, D., Fadhil, A. A., Juwita, D., Yusuf, H., and Sari, R. 2017. Enhancement of Solubility and Dissolution Rate of Quercetin with Solid Dispersion System Formation Using Hydroxypropyl Methyl Cellulose Matrix. Thai Journal of Pharmaceutical Sciences. 41(3): 112-116.

Karagianni, A., Malamatari, M., and Kachrimanis, K. 2018. Pharmaceutical Cocrystals: New Solid Phase Modification Approaches for the Formulation of APIs. Pharmaceutics. 10: 18.

DOI: http://dx.doi.org/10.3390/pharmaceutics10010018.

Fotaki, N., Brown, W., Kochling, J., Chocshi, H., Miao, H., Tang, K., and Gray, V. 2013. Rationale for Selection of Dissolution Media: Three Case Studies. Dissolution Technologies. 6-13.

DOI: http://dx.doi.org/10.14227/DT200313P6.

Hattori, Y., Haruna, Y., and Otsuka, M. 2013. Dissolution Process Analysis Using Model-Free Noyes–Whitney Integral Equation. Colloids and Surfaces B: Biointerfaces. 102: 227-231.

DOI: http://dx.doi.org/ 10.1016/j.colsurfb.2012.08.017.

Downloads

Published

2018-11-04

Issue

Section

Science and Engineering

How to Cite

CRYSTAL ENGINEERING OF QUERCETIN BY LIQUID ASSISTED GRINDING METHOD. (2018). Jurnal Teknologi, 81(1). https://doi.org/10.11113/jt.v81.12639