EVALUATION OF BACTERIAL CELLULOSE-SODIUM ALGINATE FORWARD OSMOSIS MEMBRANE FOR WATER RECOVERY
DOI:
https://doi.org/10.11113/jt.v80.12742Keywords:
Bacterial cellulose, sodium alginate, forward osmosis, water recovery, composite membraneAbstract
Water resources are very important to sustain life. However, these resources have been subjected to stress due to population growth, economic and industrial growth, pollution and climate change. With these, the recovery of water from sources such as wastewater, dirty water, floodwater and seawater is a sustainable alternative. The potential of recovering water from these sources could be done by utilizing forward osmosis, a membrane process that exploits the natural osmotic pressure gradient between solutions which requires low energy operation. This study evaluated the potential of forward osmosis (FO) composite membranes fabricated from bacterial cellulose (BC) and modified with sodium alginate. The membranes were evaluated for water flux and salt rejection. The effect of alginate concentrations and impregnation temperatures were evaluated using 0.6 M sodium chloride solution as feed and 2 M glucose solution as the draw solution. The membranes were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Contact Angle Meter (CAM). The use of sodium alginate in BC membrane showed a thicker membrane (38.3 μm to 67.6 μm), denser structure (shown in the SEM images), and more hydrophilic (contact angle ranges from 28.39° to 32.97°) compared to the pristine BC membrane (thickness = 12.8 μm and contact angle = 66.13°). Furthermore, the alginate modification lowered the water flux of the BC membrane from 9.283 L/m2-h (LMH) to value ranging from 2.314 to 4.797 LMH but the improvement in salt rejection was prominent (up to 98.57%).
References
Bansil, P. C. 2004. Water Management in India. New Delhi: Concept Publishing Company.
Watkins, K. 2006. Human Development Report 2006, Beyond Scarcity: Power, Poverty and the Global Water Crisis. New York: Palgrave Macmillan.
Lutchmiah, K., A. R. D. Verliefde, K. Roest, L. C. Rietveld, and E. R. Cornelissen. 2014. Forward Osmosis for Application in Wastewater Treatment: A Review. Water Research. 58: 179-197.
DOI: https://doi.org/10.1016/j.watres.2014.03.045.
Husnain, T., Y. Liu, R. Riffat, and B. Mi. 2015. Integration of Forward Osmosis and Membrane Distillation for Sustainable Wastewater Reuse. Separation and Purification Technology. 156(2): 424-431.
DOI: https://doi.org/10.1016/j.seppur.2015.10.031.
Roy, D., M. Rahni, P. Pierre, and V. Yargeau. 2016. Forward Osmosis for the Concentration and Reuse of Process Saline Wastewater. Chemical Engineering Journal. 287: 277-284.
DOI: https://doi.org/10.1016/j.cej.2015.11.012.
Akther, N., A. Sodiq, A. Giwa, S. Daer, H. A. Arafat, S. W. Hasan. 2015. Recent Advancements in Forward Osmosis Desalination: A Review. Chemical Engineering Journal. 281: 502-522.
DOI: https://doi.org/10.1016/j.cej.2015.05.080.
Gebreyohannes, A. Y., E. Curcio, T. Poerio, R. Mazzei, G. Di Profio, E. Drioli, and L. Giorno. 2015. Treatment of Olive Mill Wastewater by Forward Osmosis. Separation and Purification Technology. 147: 292-302.
DOI: https://doi.org/10.1016/j.seppur.2015.04.021.
Zou, S, and. Z. He. 2016. Enhancing Wastewater Reuse by Forward Osmosis with Self-diluted Commercial Fertilizers as Draw Solutes. Water Research. 99: 235-243.
DOI: https://doi.org/10.1016/j.watres.2016.04.067.
Shaffer, D. L., J. R. Werber, H. Jaramillo, S. Lin, M. Elimelech. 2015. Forward Osmosis: Where are We Now? Desalination. 356: 271-284.
DOI: https://doi.org/10.1016/j.desal.2014.10.031.
Zhao, S., and L. Zou. 2011. Effects of Working Temperature on Separation Performance, Membrane Scaling and Cleaning in Forward Osmosis Desalination. Desalination. 278(1-3): 157-164.
DOI: https://doi.org/10.1016/j.desal.2011.05.018.
Cacicedo, M. L., M. C. Castro, I. Servetas, L. Bosnea, K. Boura, P. Tsafrakidou, A. Dima, A. Terpou, A. Koutinas, and G. R. Castro. 2016. Progress in Bacterial Cellulose Matrices for Biotechnological Applications. Bioresource Technology. 23: 172-180.
DOI: https://doi.org/10.1016/j.biortech.2016.02.071.
Sulaeva, I., U. Henniges, T. Rosenau, and A. Potthast. 2015. Bacterial Cellulose as a Material for Wound Treatment: Properties and Modifications. A Review. Biotechnology Advances. 33(8): 1547-1571.
DOI: https://doi.org/10.1016/j.biotechadv.2015.07.009.
Dubey, V., L. K. Pandey, and C. Saxena. 2005. Pervaporation of Benzene/cyclohexane Mixtures through Supramolecule Containing Poly(vinyl acetal) Membranes. Separation and Purification Technology. 251(2): 163-171.
DOI: https://doi.org/10.1016/j.seppur.2005.11.005.
Dubey, V., C. Saxena, L. Singh, K. V. Ramana, and R. S. Chauhan. 2002. Pervaporation of Binary Water-ethanol Mixtures through Bacterial Cellulose Membrane. Separation and Purification Technology. 27(2): 163-171.
DOI: https://doi.org/10.1016/S1383-5866(01)00210-6.
Suratago, T., S. Taokaew, N. Kanjanamosit, K. Kanjanaprapakul, V. Burapatana, and M. Phisalaphong. 2015. Development of Bacterial Cellulose/Alginate Nanocomposite Membrane for Separation of Ethanol-Water Mixtures. Journal of Industrial and Engineering Chemistry. 32: 305-312.
DOI: https://doi.org/10.1016/j.jiec.2015.09.004.
Shibazaki, H., S. Kuga, F. Onabe, and M. Usuda. 1993. Bacterial cellulose Membrane as Separation Medium. Journal of Applied Polymers Science. 50(6): 965-969.
DOI: 10.1002/app.1993.070500605.
Evans, B. R., H. M. O'Neill, V. P. Malyvanh, I. Lee, and J. Woodward. 2003. Palladium-bacterial Cellulose Membranes for Fuel Cells. Biosensors and Bioelectronics. 18(7): 917-923.
DOI: https://doi.org/10.1016/S0956-5663(02)00212-9.
Legnani, C., C. Vilani, V. L. Calil, H. S. Barud, W. G. Quirino, C. A. Achete, S. J. L. Ribeiro, and M. Cremona. 2008. Bacterial Cellulose Membrane as Flexible Substrate for Organic Light Emitting Devices. Thin Solid Films. 517(3): 1016-1020.
DOI: https://doi.org/10.1016/j.tsf.2008.06.011.
Evans, B. R., H.M. O’Neill, V. P. Malyvanh, I. Lee, and J. Woodward. 2003. Palladium-bacterial Cellulose Membranes for Fuel Cells. Biosensors and Bioelectronics. 18(7): 917-923.
DOI: https://doi.org/10.1016/S0956-5663(02)00212-9.
Hu, W., S. Chen, X. Li, S. Shi, W. Shen, X. Zhang, and H. Wang. 2009. in Situ Synthesis of Silver Chloride Nanoparticles into Bacterial Cellulose Membranes. Materials Science and Engineering: C. 29(4): 1216-1219.
DOI: https://doi.org/10.1016/j.msec.2008.09.017.
Maneerung, T., S. Tokura, and R. Rujiravanit. 2008. Impregnation of Silver Nanoparticles into Bacterial Cellulose for Antimicrobial Wound Dressing. Carbohydrate Polymers. 72(1): 43-51.
DOI: https://doi.org/10.1016/j.carbpol.2007.07.025.
Childress, A. E., J. A. Brant, P. Rempala, D. W. Phipps Jr., and Kwan, P. 2012. Evaluation of Membrane Characterization Methods. Washington, DC: Water Research Foundation.
Eusebio, R. C., M. A. Promentilla, and H. S. Kim. 2016. Optimization of Forward Osmosis System for the Utilization of Reverse Osmosis Brine. Desalination and Water Treatment. 57: 27899-27904.
McCutcheon, J. and M. Elimelech. 2006. Influence of Concentrative and Dilutive Internal Concentration Polarization on Flux Behavior in Forward Osmosis. Journal of Membrane Science. 284(1-2): 237-247.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.