FABRICATION OF NON REFLECTING FILM BASED ON POLYSTYRENE AND METHYL METHACRYLATE USING SPIN COATING TO INCREASE A LIGHT TRANSMISSION ON ITO GLASS

Authors

  • Sudarsono Sudarsono Department of Physics, Institut Teknologi Sepuluh Nopember, Keputih Sukolilo 6011, Surabaya, Indonesia http://orcid.org/0000-0002-5035-9666
  • Gatut Yudoyono Department of Physics, Institut Teknologi Sepuluh Nopember, Keputih Sukolilo 6011, Surabaya, Indonesia
  • Diky Anggoro Department of Physics, Institut Teknologi Sepuluh Nopember, Keputih Sukolilo 6011, Surabaya, Indonesia
  • Hasto Sunarno Department of Physics, Institut Teknologi Sepuluh Nopember, Keputih Sukolilo 6011, Surabaya, Indonesia
  • Yono Hadi Pramono Department of Physics, Institut Teknologi Sepuluh Nopember, Keputih Sukolilo 6011, Surabaya, Indonesia

DOI:

https://doi.org/10.11113/jt.v82.12777

Keywords:

Thin film, ITO, nonreflecting, mma, polystyrene

Abstract

Thin films are developed for multi-purposes, such as optical waveguides, corrosion resistant coating, car tinting, and glass coatings. Each thin film is created and designed with a specific purpose and function. The purpose of this research was to fabrication anti-reflective films on glass Indium Tin Oxide (ITO) usually used as an electrode in Dye-sensitized Solar Cell (DSSC). In this research, the material used involved solution 100.12 g/mol Methyl Methacrylate (MMA) and 3% Polystyrene(PS) with a spin coating method. In this study, polystyrene and methyl methacrylate solution dripped on ITO glass was then rotated at 1000, 1500, 2000 and 2500 rpm. This study shows that polystyrene and methyl methacrylate materials can be used as an anti-reflection coating on the ITO substrate by a spin coating method. The methyl methacrylate material is good for anti-reflection coating at 400-475 nm wavelength region, while the polystyrene material is good for 475-700 nm wavelength. The addition of a 3% polystyrene coating on ITO glass can increase light transmission at a wavelength of 475-700 nm by 1.14% when compared to ITO glass without a polystyrene coating. The highest light transmission of 90.11% occurs at a wavelength of 420 nm when the ITO glass is coated with methyl methacrylate.

References

Rezem, Maher, Axel Günther, Maik Rahlves, Bernhard Roth, and Eduard Reithmeier. 2016. Fabrication and Sensing Applications of Multilayer Polymer Optical Waveguides. Procedia Technology 26. 3rd International Conference on System-integrated Intelligence: New Challenges for Product and Production Engineering. 517-523. Doi:10.1016/j.protcy.2016.08.064.

Ferreira, M., J. Loureiro, A. Nogueira, A. Rodrigues, R. Martins, and I. Ferreira. 2015. SnO2 thin Film Oxides Produced by rf Sputtering for Transparent Thermoelectric Devices. Materials Today: Proceedings 2. 12th European Conference on Thermoelectrics. 647-653. Doi:10.1016/j.matpr.2015.05.090.

Ardyanian, M., M. Moeini, and H. Azimi Juybari. 2014. Thermoelectric and Photoconductivity Properties of Zinc Oxide–Tin Oxide Binary Systems Prepared by Spray Pyrolysis. Thin Solid Films. 552: 39-45. Doi:10.1016/j.tsf.2013.12.010.

Mahida, H. R., Deobrat Singh, Yogesh Sonvane, Sanjeev K. Gupta, and P. B. Thakor. 2017. MgF2 Monolayer as an Anti-reflecting Material. Solid State Communications. 252: 22-28. Doi:10.1016/j.ssc.2017.01.005.

Pospiech, Doris, Dieter Jehnichen, Sandra Starke, Felix Müller, Tobias Bünker, Anne Wollenberg, Liane Häußler, et al. 2017. Multifunctional Methacrylate-based Coatings for Glass and Metal Surfaces. Applied Surface Science. 399: 205-214. Doi:10.1016/j.apsusc.2016.12.018.

Lee, Yeeu-Chang, Che-Chun Chang, and Yen-Yu Chou. 2014. Fabrication of Broadband Anti-reflective Sub-micron Structures using Polystyrene Sphere Lithography on a Si Substrate. Photonics and Nanostructures-Fundamentals and Applications. 12: 16-22. Doi:10.1016/j.photonics.2013.07.007.

Wang, Peng, Tao Yao, Bo Sun, Xiaoliang Fan, Sijie Dong, Yun Bai, and Yu Shi. 2017. A Cost-effective Method for Preparing Mechanically Stable Anti-corrosive Superhydrophobic Coating Based on Electrochemically Exfoliated Graphene. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 513: 396-401. Doi:10.1016/j.colsurfa.2016.11.002.

Montemor, M. F. 2014. Functional and Smart Coatings for Corrosion Protection: A Review of Recent Advances. Surface and Coatings Technology. 258: 17-37. Doi:10.1016/j.surfcoat.2014.06.031.

Yu, Jiaguo, Jiajie Fan, and Bei Cheng. 2011. Dye-sensitized solar Cells Based on Anatase TiO2 Hollow Spheres/carbon Nanotube Composite Films. Journal of Power Sources. 196: 7891-7898. Doi:10.1016/j.jpowsour.2011.05.014.

Maabong, Kelebogile, Cosmas M. Muiva, Philip Monowe, Stephen T. Sathiaraj, Maren Hopkins, Leslie Nguyen, Keoratile Malungwa, and Mosimanegape Thobega. 2016. Natural Pigments as Photosensitizers for Dye-sensitized Solar Cells with TiO2 Thin Films. International Journal of Renewable Energy Research. 5: 501-506.

Sutha, S., Sisira Suresh, Baldev Raj, and K. R. Ravi. 2017. Transparent Alumina Based Superhydrophobic Self–cleaning Coatings for Solar Cell Cover Glass Applications. Solar Energy Materials and Solar Cells. 165: 128-137. Doi:10.1016/j.solmat.2017.02.027.

Ramanarayanan, Rajita, Nijisha P., Niveditha C. V., and Sindhu, S. 2017. Natural Dyes from Red Amaranth Leaves as Light-harvesting Pigments for Dye-sensitized Solar Cells. Materials Research Bulletin 90: 156-161. doi:10.1016/j.materresbull.2017.02.037.

Gong, Jiawei, K. Sumathy, Qiquan Qiao, and Zhengping Zhou. 2017. Review on Dye-sensitized Solar Cells (DSSCs): Advanced Techniques and Research Trends. Renewable and Sustainable Energy Reviews 68. Part 1: 234-246. Doi:10.1016/j.rser.2016.09.097.

Nan, Hui, He-Ping Shen, Gang Wang, Shou-Dong Xie, Gui-Jun Yang, and Hong Lin. 2017. Studies on the Optical and Photoelectric Properties of Anthocyanin and Chlorophyll as Natural Co-sensitizers in Dye Sensitized Solar Cell. Optical Materials. 73: 172-178. Doi:10.1016/j.optmat.2017.07.036.

15. Fan, Jiajie, Shengwei Liu, and Jiaguo Yu. 2012. Enhanced Photovoltaic Performance of Dye-sensitized Solar Cells based on TiO2 Nanosheets/graphene Composite Films. Journal of Materials Chemistry. 22: 17027-17036. Doi:10.1039/C2JM33104G.

Fan, Jiajie, Zhenzhen Li, Wenyuan Zhou, Yucong Miao, Yaojia Zhang, Junhua Hu, and Guosheng Shao. 2014. Dye-sensitized Solar Cells Based on Tio2 Nanoparticles/Nanobelts Double-layered Film with Improved Photovoltaic Performance. Applied Surface Science 319. Photocatalytic Materials for Energy and Environmental Applications. 75-82. Doi:10.1016/j.apsusc.2014.07.054.

Syafinar, R., N. Gomesh, M. Irwanto, M. Fareq, and Y. M. Irwan. 2015. Chlorophyll Pigments as Nature Based Dye for Dye-Sensitized Solar Cell (DSSC). Energy Procedia 79. 2015 International Conference on Alternative Energy in Developing Countries and Emerging Economies. 896-902. Doi:10.1016/j.egypro.2015.11.584.

Hassan, H. C., Z. H. Z. Abidin, F. I. Chowdhury, and A. K. Arof. 2016. A High Efficiency Chlorophyll Sensitized Solar Cell with Quasi Solid PVA Based Electrolyte. International Journal of Photoenergy. 2016: e3685210. Doi:10.1155/2016/3685210.

Nazeeruddin, Md. K., Etienne Baranoff, and Michael Grätzel. 2011. Dye-sensitized Solar Cells: A Brief Overview. Solar Energy 85. Organic Photovoltaics and Dye Sensitized Solar Cells. 1172-1178. Doi:10.1016/j.solener.2011.01.018.

Sutha, S., Sisira Suresh, Baldev Raj, and K. R. Ravi. 2017. Transparent Alumina Based Superhydrophobic Self–cleaning Coatings for Solar Cell Cover Glass Applications. Solar Energy Materials and Solar Cells. 165: 128-137. doi:10.1016/j.solmat.2017.02.027.

Huang, Q. Z., J. F. Shi, L. L. Wang, Y. J. Li, L. W. Zhong, and G. Xu. 2016. Study on Sodium Water Glass-based Anti-reflective Film and Its Application in Dye-sensitized Solar Cells. Thin Solid Films. 610: 19-25. Doi:10.1016/j.tsf.2016.05.010.

Yan, Xing, Frank W. Mont, David J. Poxson, Martin F. Schubert, Jong Kyu Kim, Jaehee Cho, and E. Fred Schubert. 2009. Refractive-Index-Matched Indium–Tin-Oxide Electrodes for Liquid Crystal Displays. Japanese Journal of Applied Physics. 48: 120203. doi:10.1143/JJAP.48.120203.

Nisticò, Roberto, Dominique Scalarone, and Giuliana Magnacca. 2017. Sol-gel Chemistry, Templating and Spin-coating Deposition: A Combined Approach to Control in a Simple Way the Porosity of Inorganic Thin Films/Coatings. Microporous and Mesoporous Materials. 248: 18-29. Doi:10.1016/j.micromeso.2017.04.017.

Khan, M. I., K. A. Bhatti, Rabia Qindeel, Norah Alonizan, and Hayat Saeed Althobaiti. 2017. Characterizations of Multilayer ZnO Thin Films Deposited by Sol-gel Spin Coating Technique. Results in Physics. 7: 651-655. Doi:10.1016/j.rinp.2016.12.029.

Babgohari, M. Zamani, S. M. Bagher Ghorashi, and Gh. Mirjalili. 2017. Optical and Structural Properties of PVK/CA/PVK Thin Films Fabricated by Spin Coating Method. Optik - International Journal for Light and Electron Optics. 131: 862-868. doi:10.1016/j.ijleo.2016.11.157.

Chang, Chao-Ching, Chia-Ling Pai, Wen-Chang Chen, and Samson A. Jenekhe. 2005. Spin Coating of Conjugated Polymers for Electronic and Optoelectronic Applications. Thin Solid Films. 479: 254-260. Doi:10.1016/j.tsf.2004.12.013.

Jayamurugan, P., V. Ponnuswamy, Y. V. Subba Rao, S. Ashokan, and S. Meenakshisundar. 2015. Influence of Spin Coating Rate on the Thickness, Surface Modification and Optical Properties of Water Dispersed PPy Composite Thin Films. Materials Science in Semiconductor Processing. 39: 205-210. Doi:10.1016/j.mssp.2015.05.014.

Sammaljärvi, Juuso, Lalli Jokelainen, Jussi Ikonen, and Marja Siitari-Kauppi. 2012. Free Radical Polymerisation of MMA with Thermal Initiator in Brick and Grimsel Granodiorite. Engineering Geology. 135-136: 52-59. Doi:10.1016/j.enggeo.2012.03.005.

Sahu, Niranjan, B. Parija, and S. Panigrahi. 2009. Fundamental Understanding and Modeling of Spin Coating Process: A Review. Indian Journal of Physics. 83: 493-502. Doi:10.1007/s12648-009-0009-z.

Sabitha, C., and I. Hubert Joe. 2015. Synthesis and Characterization of PMMA Adherent ZnS thin Films by Spin Coating Method. Materials Today: Proceedings 2. 5th International Conference on Perspectives in Vibrational Spectroscopy. 1046-1050. Doi:10.1016/j.matpr.2015.06.035.

Liou, Yeuh-Yeong. 2004. Tuning Iteration Method for Antireflection Coating Designs in the Visible Spectral Region. Japanese Journal of Applied Physics. 43: 547. Doi:10.1143/JJAP.43.547.

Downloads

Published

2020-02-04

Issue

Section

Science and Engineering

How to Cite

FABRICATION OF NON REFLECTING FILM BASED ON POLYSTYRENE AND METHYL METHACRYLATE USING SPIN COATING TO INCREASE A LIGHT TRANSMISSION ON ITO GLASS. (2020). Jurnal Teknologi, 82(2). https://doi.org/10.11113/jt.v82.12777