MULTI-TEMPORAL MODIS FOR DETECTION AND PUBLISHED LITERATURES FOR VALIDATION OF PHYTOPLANKTON BLOOMS IN SABAH AND SARAWAK, MALAYSIA

Authors

  • Mohammad Shawkat Hossain Institute of Oceanography and Environment (INOS), University Malaysia Terengganu (UMT), 21030 Kuala Nerus, Terengganu, Malaysia
  • Mazlan Hashim Universiti Teknologi Malaysia
  • Mohamed Aidy Muslim Institute of Oceanography and Environment (INOS), University Malaysia Terengganu (UMT), 21030 Kuala Nerus, Terengganu, Malaysia

DOI:

https://doi.org/10.11113/jt.v81.12944

Keywords:

Harmful phytoplankton bloom, MODIS, Chlorophyll-a, Algal Bloom Index, normalized Fluorescence Line Height, Malaysia

Abstract

The coastal region of Sabah, Malaysia is mostly affected by harmful algal blooms (HABs) that often cause massive fish kills, and sometimes human casualties. Lack of a well-agreed, transparent and reproducible method, aperiodic nature and limited (technical) ability to monitor HAB at large regional scale, have all led to reinforced methodological improvement for bloom prediction, scientific management of coastal water resources, and regulatory attention. MODerate Resolution Imaging Spectroradiometer (MODIS), one of the well validated ocean colour sensors, enables acquiring high spectral resolution images, with short revisit time, freely accessible, and bay-wide coverage. Yet, the relative efficiency of MODIS-derived Chl-a (Chlorophyll-a), ABI (Algal Bloom Index), and nFLH (normalized Fluorescence Line Height) have not been compared in coastal regions of Malaysia. Fifteen MODIS Level 2 images acquired between 2005 and 2013 were considered as time series data that matched HAB events mentioned in previous studies. As historical real time in-situ data collection is often difficult (inaccessible), and thus unavailable; this project had to validate results obtained from literature, assuming that in-situ, would indicate HAB location at least during MODIS acquisition dates. Variations of HAB affected areas with temporal and spatial scales derived from bloom indices are shown in colour maps. Reliability of bloom information was measured by subjectively comparing HAB results provided by indices, and previously published in-situ results. ABI outperformed Chl-a and nFLH indices based on comparisons in both normal and HAB conditions occurring in the coastal waters of Sabah and Sarawak. The configuration and reliability retrieved from MODIS-ABI allowed their application in different likely tropical region as automated HAB monitoring systems and coastal water management programmes.

Author Biography

  • Mazlan Hashim, Universiti Teknologi Malaysia

    Inst of Sustainable Environment

    Director

References

Anderson, D. M., and Maguire, J. 2016. Forecasting the Risk of Harmful Algal Blooms. Harmful Algae. 53: 1-7.

DOI: https://doi.org/10.1016/j.hal.2015.11.005.

Lim, P. T., Usup, G., and Leaw, C. P. 2012. Harmful Algal Blooms in Malaysian Waters. Sains Malaysiana. 41(12): 1509-1515.

Assmy, P., and Smetacek, V. 2009. Algal Blooms. Encyclopedia of Microbiology. 27-41.

Lim, P. T., Leaw, C. P., and Usup, G. 2004. First Incidence of Paralytic Shellfish Poisoning on the East Coast of Peninsular Malaysia. Marine Science into the New Millennium: New Perspectives and Challenges. Phang, S. M., Chong, V. C., Ho, S. S., Mokhtar, N., and Ooi, J. L. S. (eds.). University of Malaya Maritime Research Centre: Kuala Lumpur, Malaysia. 661-667.

Usup, G., Leaw, C. P., Lim, P. T., and Ahmad, A. 2002. Probable Toxin Producer Responsible for the First Occurrence of Paralytic Shellfish Poisoning on the East Coast of Peninsula Malaysia. Malaysia Appllied Biology. 31(2): 29-35.

Lim, P. T., Leaw, C. P., and Ogata, T. 2007. Morphological Variation of Two Alexandrium Species Responsible for Paralytic Shellfish Poisoning in Southeast Asia. Botanica Marina. 50(1): 14-21.

DOI : https://doi.org/10.1515/BOT.2007.003.

Usup, G., and Azanza, R. V. 1998. Physiology and Bloom Dynamics of the Tropical Dinoflagellate Pyrodinium Bahamense. In Physiological Ecology of Harmful Algal Blooms. Anderson, D. M., Cembella, A. D., and Hallegraeff, G. M. (eds.) Berlin: Springer-Verlag. 81-94.

Usup, G., Ahmad, A., Matsuoka, K., Lim, P. T., and Leaw, C. P. 2012. Biology, Ecology and Bloom Dynamics of the Toxic Marine Dinoflagellate Pyrodinium Bahamense. Harmful Algae. 14: 301-312.

DOI: https://doi.org/10.1016/j.hal.2011.10.026.

Mohammad-Noor, N., Adam, A., Franco Soler, J. M., Anton, A., and Muhamad Shaleh, S. R. 2010. First Record of Toxic Gymnodinium Catenatum off the West Coast of Sabah, Malaysia. In Proceedings of 13th International Conference on Harmful Algae. Ho, K. C., Zhou, M. J., Qi, Y. Z. (eds.). International Society for the Study of Harmful Algae, Hong Kong. 25-29.

Lim, H. C., Leaw, C. P., Tan, T. H., Kon, N. F., Yek, L. H., Hii, K. S., Teng, S. T., Razali, R. M., Usup, G., Iwataki, M., and Lim, P. T. 2014. A Bloom of Karlodinium Australe (Gymnodiniales, Dinophyceae) Associated with Mass Mortality of Cage-Cultured Fishes in West Johor Strait, Malaysia. Harmful Algae. 40: 51-62.

DOI : https://doi.org/10.1016/j.hal.2014.10.005.

Roy, R. N. 1997. Red Tide and Outbreak of Paralytic Shellfish Poisoning in Sabah. Medical Journal of Malaysia. 31(3): 247-251.

Wang, S., Tang, D., He, F., Fukuyo, Y., and Azanza, R. V. 2008. Occurrences of Harmful Algal Blooms (HABs) Associated with Ocean Environments in the South China Sea. Hydrobiologia. 596(1): 79-93.

DOI: https://doi.org/10.1007/s10750-007-9059-4.

Azanza, R. V., and Taylor, F. J. R. 2001. Are Pyrodinium Blooms in the Southeast Asian Region Recurring and Spreading? A View at the End of the Millennium. Ambio. 30(6): 356-364.

DOI : https://doi.org/10.1579/0044-7447-30.6.356.

Anton, A., Teoh, P. L., Mohd-Shaleh, S. R., and Mohammad-Noor, N. 2008. First Occurrence of Cochlodinium Blooms in Sabah, Malaysia. Harmful Algae. 7(3): 331-336.

DOI : https://doi.org/10.1016/j.hal.2007.12.013.

Blondeau-Patissier, D., Gower, J. F. R., Dekker, A. G., Phinn, S. R., and Brando, V. E. 2014. A Review of Ocean Color Remote Sensing Methods and Statistical Techniques for the Detection, Mapping and Analysis of Phytoplankton Blooms in Coastal and Open Oceans. Progress in Oceanography. 123: 123-144.

DOI : https://doi.org/10.1016/j.pocean.2013.12.008.

Matthews, M. W. 2011. A Current Review of Empirical Procedures of Remote Sensing in Inland and Near-Coastal Transitional Waters. International Journal of Remote Sensing. 32(21): 6855-6899.

Hossain, M. S., Bujang, J. S., Zakaria, M. H., and Hashim, M. 2015. The Application of Remote Sensing to Seagrass Ecosystems: An Overview and Future Research Prospects. International Journal of Remote Sensing. 36(1): 61-114.

DOI : https://doi.org/10.1080/01431161.2014.990649.

Hossain, M. S., Bujang, J. S., Zakaria, M. H., and Hashim, M. 2016. Marine and Human Habitat Mapping for the Coral Triangle Initiative Region of Sabah Using Landsat and Google Earth Imagery. Marine Policy. 72: 176-191.

DOI : https://doi.org/10.1016/j.marpol.2016.07.003.

Hashim, M., Ito, S., Numata, S., Hosaka, T., Hossain, M. S., Misbari, S., Yahya, N. N., and Ahmad, S. 2017. Using Fisher Knowledge, Mapping Population, Habitat Suitability and Risk for the Conservation of Dugongs in Johor Straits of Malaysia. Marine Policy. 78: 18-25.

DOI : https://doi.org/10.1016/j.marpol.2017.01.002.

Anderson, D. M., Cembella, A. D., and Hallegraeff, G. M. 2012. Progress in Understanding Harmful Algal Blooms: Paradigm Shifts and New Technologies for Research, Monitoring, and Management. Annual Review of Marine Science. 4(1): 143-176.

DOI: https://doi.org/10.1146/annurev-marine-120308-081121.

Shen, L., Xu, H., and Guo, X. 2012. Satellite Remote Sensing of Harmful Algal Blooms (HABs) and A Potential Synthesized Framework. Sensors. 12(6): 7778-7803.

DOI: https://doi.org/10.3390/s120607778.

Ting, T. M., and Wong, J. T. S. 1989. Summary of Red Tide and Paralytic Shellfish Poisoning in Sabah, Malaysia. Biology, Epidemiology and Management of Pyrodinium Red Tides. Hallegraeff, G. M., and Maclean, J. L. (eds.). ICLARM. 19-29.

Razali, R. M., Leaw, C. P., Lim, H. C., Nyanti, L., Ishak, I., and Lim, P. T. 2015. Harmful Microalgae Assemblage in the Aquaculture Area of Aman Island, Northen Strait of Malacca. Malaysian Journal of Science. 34(1): 24-36.

Tan, T. H., Leaw, C. P., Hii, K. S., and Lim, P. T. 2012. Morphology of Two Harmful Prorocentrum (Dinophyceae) from Malaysian Borneo. Proceedings of the 12th Symposium of the Malaysian Society of Applied Biology. Kuala Terengganu, Terengganu. 294-300.

Chen, J., and Quan, W. 2013. An Improved Algorithm for Retrieving Chlorophyll-A from the Yellow River Estuary Using MODIS Imagery. Environmental Monitoring and Assessment. 185(3): 2243-2255.

DOI: https://doi.org/ 10.1007/s10661-012-2705-y.

Sidik, M. J., Rashed-Un-Nabi, M., and Azharul Hoque, M. 2008. Distribution of Phytoplankton Community in Relation to Environmental Parameters in Cage Culture Area of Sepanggar Bay, Sabah, Malaysia. Estuarine, Coastal and Shelf Science. 80(2): 251-260.

DOI : https://doi.org/10.1016/j.ecss.2008.08.004.

Lim, H. C., Lim, P. T., Su, S. N. P., Teng, S. T., and Leaw, C. P. 2011. Genetic Diversity of Pseudo-Nitzschia Pungens (Bacillariophyceae) in Borneo, Malaysia. Coastal Marince Science. 35(1): 58-63.

Lim, H. C., Lim, P. T., Teng, S. T., Bates, S. S., and Leaw, C. P. 2014. Genetic Structure of Pseudo-Nitzschia Pungens (Bacillariophyceae) Populations: Implications of A Global Diversification of the Diatom. Harmful Algae. 37: 142-152.

DOI: https://doi.org/10.1016/j.hal.2014.06.004.

Ahn, Y.-H. and Shanmugam, P. 2006. Detecting the Red Tide Algal Blooms from Satellite Ocean Color Observations in Optically Complex Northeast-Asia Coastal Waters. Remote Sensing of Environment. 103(4): 419-437.

DOI: https://doi.org/10.1016/j.rse.2006.04.007.

Shanmugam, P. 2011. A New Bio-Optical Algorithm for the Remote Sensing of Algal Blooms in Complex Ocean Waters. Journal of Geophysical Research: Oceans. 116: 1-12.

DOI: https://doi.org/10.1029/2010JC006796.

Neville, R. A., and Gower, J. F. R. 1977. Passive Remote Sensing of Phytoplankton Via Chlorophyll Α Fluorescence. Journal of Geophysical Research. 82(24): 3487-3493.

DOI : https://doi.org/10.1029/JC082i024p03487.

Letelier, R. M., and Abbott, M. R. 1996. An Analysis of Chlorophyll Fluorescence Algorithms for the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sensing of Environment. 58(2): 215-223.

DOI : https://doi.org/10.1016/S0034-4257(96)00073-9.

Frolov, S., Kudela, R. M., and Bellingham, J. G. 2013. Monitoring of Harmful Algal Blooms in the Era of Diminishing Resources: A Case Study of The U.S. West Coast. Harmful Algae. 21-22: 1-12.

DOI: https://doi.org/10.1016/j.hal.2012.11.001.

Babin, M., Roesler, C. S., and Cullen, J. J. 2008. Real-Time Coastal Observing Systems for Marine Ecosystem Dynamics and Harmful Algal Blooms: Theory, Instrumentation and Modelling. Paris, France: Unesco.

Moore, T. S., Campbell, J. W., and Dowell, M. D. 2009. A Class-Based Approach to Characterizing and Mapping the Uncertainty of the MODIS Ocean Chlorophyll Product. Remote Sensing of Environment. 113(11): 2424-2430.

DOI: https://doi.org/10.1016/j.rse.2009.07.016.

Cannizzaro, J. P., Carder, K. L., Chen, F. R., Heil, C. A., and Vargo, G. A. 2008. A Novel Technique for Detection of the Toxic Dinoflagellate, Karenia Brevis, in the Gulf of Mexico from Remotely Sensed Ocean Color Data. Continental Shelf Research. 28(1): 137-158.

DOI: https://doi.org/10.1016/j.csr.2004.04.007.

Siswanto, E., Ishizaka, J., Tripathy, S. C., and Miyamura, K. 2013. Detection Of Harmful Algal Blooms Of Karenia Mikimotoi Using MODIS Measurements: A Case Study Of Seto-Inland Sea, Japan. Remote Sensing of Environment. 129: 185-196.

DOI: https://doi.org/10.1016/j.rse.2012.11.003.

Zhao, D., Xing, X., Liu, Y., Yang, J., and Wang, L. 2010. The Relation of Chlorophyll-A Concentration with the Reflectance Peak Near 700 Nm in Algae-Dominated Waters and Sensitivity of Fluorescence Algorithms for Detecting Algal Bloom. Internationa Journal of Remote Sensing. 31(1): 39-48.

DOI: https://doi.org/10.1080/01431160902882512.

Huisman, J., Pham Thi, N. N., Karl, D. M., and Sommeijer, B. 2006. Reduced Mixing Generates Oscillations and Chaos in the Oceanic Deep Chlorophyll Maximum. Nature. 439(7074): 322.

DOI: https://doi.org/10.1038/nature04245.

Villareal, T. A., Adornato, A., Wilson, C., and Schoenbaechler, C. A. 2011. Summer Blooms of Diatom-Diazotroph Assemblages and Surface Chlorophyll in the North Pacific Gyre: A Disconnect. Journal of Geophysical Research: Oceans. 116: C03001.

DOI: https://doi.org/10.1029/2010JC006268.

Downloads

Published

2019-04-09

Issue

Section

Science and Engineering

How to Cite

MULTI-TEMPORAL MODIS FOR DETECTION AND PUBLISHED LITERATURES FOR VALIDATION OF PHYTOPLANKTON BLOOMS IN SABAH AND SARAWAK, MALAYSIA. (2019). Jurnal Teknologi, 81(3). https://doi.org/10.11113/jt.v81.12944