THE EFFECT OF PARTICLE SIZE OF EMPTY FRUIT BUNCH AND RATIO OF BIOSLUDGE OF PULP AND PAPER ON BIOCHEMICAL CHANGES IN COMPOSTING PROCESS
DOI:
https://doi.org/10.11113/jt.v81.13071Keywords:
Empty fruit bunch, biosludge of pulp and paper, particle size, compostingAbstract
The abundance of empty fruit bunches (EFB) is a result of many palm oil industries increasing their crude palm oil production. Composting is a good, environmentally friendly alternative to overcome EFB. Two different ratios of EFB with biosludge of pulp and paper of 1 : 1 and 3 : 2, respectively, were used in this composting. The particle size of EFB was set into three different sizes of 0.5; 1.5 and 2.5 cm. The best treatment that was obtained from this study was SR4 where the EFB particle size was 1.5 cm, and the ratio between EFB and biosludge of pulp and paper was 3 : 2, respectively. The nitrogen value of SR4 increased from 1.41% to 2.71%, and C/N ratio decreased from 36.74 to 12.17 in 90 days. The population peak of bacteria of SR4 in the thermopilic phase achieved about 33.67 x 1010 cfu/g. These two treatment combinations had shown an increase in EFB composting efficiency.
References
Stichnothe, H., and Schuchardt, F. 2010. Comparison of Different Treatment Options for Palm Oil Production Waste on A Life Cycle Basis. International Journal Life Cycle Assessment. 15: 907-915. DOI: http://dx.doi.org/10.1007/s11367-010-0223-0.
Hayashi, K. 2007. Environmental Impact of Palm Oil Industry in Indonesia. Proceedings of in International Symposium on Eco Topia Science, ISETS07. 646-651.
Darnoko and Sutarta, A. S. 2006. Pabrik Kompos di Pabrik Sawit. Tabloid Sinar Tani. Indonesia.
Badan Pusat Statistik. 2013. Sensus Pertanian 2013. Badan Pusat Statistik Publisher. Indonesia.
Mohammad, N., Alam, Md. Z., Kabashi, N. A., and Ahsan, A. 2012. Effective Composting of Oil Palm Industrial Waste by Filamentous Fungi: A Review. Resources, Conversion and Recycling. 58: 69-78. DOI: http://dx.doi.org/10.1016/j.resconre.2011.10.009.
Embrandiri, A., Singh, R. P., Ibrahim, H. M., and Ramli, A. A. 2012. Land Application of Biomass Residue Generated from Palm Oil Processing: Its Potential Benefit and Threats. Environmentalist. 32: 111-117. DOI: http://dx.doi.org/10.1007/s10669-011-9367-0.
Singh, R. P., Ibrahim, M. H., Esa, N., and Iliyana, M. S. 2010. Composting of Waste from Palm Oil Mill: A Sustainable Waste management Practice. Rev Environ Sci Biotechnol. 9: 331-334. DOI: http://dx.doi.org/10.1007/s11157-010-9199-2.
Suhaimi, M and Ong, H. K. 2001. Composting Empty Fruit Bunches of Oil Palm. The Food and Fertilizer Technology Center.
Norhasmillah, A. H., Puah, C. W., Ibrahim, N. A., Baharuddin, A. S., and Choo, Y. M. 2013. Life Cycle Inventory of the Commercial Production of Compost Oil Palm Biomass: A Case Study. Environ Dev Sustain. 15(6): 1663-1670. DOI: http://dx.doi.org/10.1007/s10668-013-9457-x.
Baharuddin, A. S., Wakisaka, M., Shirai, Y., Abd-Aziz, S., Abd-Rahman, N. A., and Hassan, M. A. 2009. Co-Composting of Empty Fruit Bunches and Partially Treated Palm Oil Mill Effluent in Pilot Scale. International Journal of Agricultural Research. 4(2): 69-78
Kananam, W., Suksaroj, T. T., and Suksaroj, C. 2011. Biochemical Changes during Oil Palm (Elaeis Guineensis) Empty Fruit Bunches Composting with Decanter Sludge and Chicken Manure. Science Asia. 37: 17-23. DOI: http://dx.doi.org/10.2306/scienceasia1513-1874.2011.37.017.
Mohammad, N., Alam, Md. Z., and Kabashi, N. A. 2013. Development of Composting Process of Oil Palm Industrial Wastes by Multi-Enzymatic Fungal System. Journal Mater Cycles Waste Management. 15: 348-35. DOI: http://dx.doi.org/10.1007/s10163-013-0125-x.
Razali, W. A. W., Baharuddin, A. S., Talib, A. T., Sulaiman, A., Naim, M. N., Hassan, M. A., and Shirai, Y. 2012. Degradation of Oil Palm Empty Fruit Bunches (OPEFB) Fiber during Composting Process Using In-Vessel Composter. Bioresource. 7(4): 4786-4805
Thambirajah, J. J., Zulkali, M. D., and Hashim, M. A. 1995. Microbiological and Biochemical Changes during the Composting of Oil Palm Empty-Fruit-Bunches. Effect of Nitrogen Supplementation on the Substrate. Bioresource Technology. 52: 133-144
DOI : http://dx.doi.org/0960-8524/95
Vakili, M., Haque, A. A. M., Hosseini, S. M., and Salamatinia, B. 2012. Evaluation of Maturation and Stability Some Indexes of Mixed Palm Oil Biowaste Composting Process and Poultry Litter. World Applied Sciences Journal. 19(2): 234-240
DOI : http://dx.doi.org/10.1080/03650340.2010.547191
Yahya, A., Sye, C. P., Ishola, T. A., and Suryanto, H. 2010. Effect of Adding Palm Oil Mill Decanter Cake Slurry with Regular Turning Operation on the Compost Process and Quality of Compost from Oil Palm Empty Fruit Bunches. Bioresource Technology. 101: 8736-8741
DOI : http://dx.doi.org/10.1016/j.biortech.2010.05.073
Yeoh, C. Y., Chin, N. L., Tan, C. S., and Ooi, H. S. 2011. Acceleration Effects of Microbial Inoculums on Palm Oil Mill Organic Waste Composting. Compost Science and Utilization. 19(2): 135-142
Bueno, P., Tapias, R., Lopez, F., and Diaz. M. J. 2008. Optimizing Composting Parameters for Nitrogen Conservation in Composting. Bioresource Technology. 99: 5069
Epstein, E. 2011. Industrial Composting: Environmental Engineering and Facilities Management. CRC Press, New York
Asia Pacific Resources International . 2012. Riau Fiber and Mill Overview. APRIL Press. Indonesia
Luo, W., Chen, T. B., Zheng, G. D., Gao, D., Zhang, Y. A., and Gao, W. 2008. Effect of Moisture Adjustments on Vertical Temperature Distribution during Forced-Aeration Static-Pile Composting of Sewage Sludge. Resources, Conservation and Recycling. 52: 635-642
DOI : http://dx.doi.org/10.1016/j.resconrec.2007.08.004
APHA. 2005. Standard Methods for Examination Water and Wastewater, 21th Edition, American Public and Health Association, Washington, D, C.
Ahmad, M. N., Mokhtar, M. N., Baharuddin, A. S., Hock, L. S., Ali, S. R. A., Abd-Aziz, S., Rahman, N. A. A., and Hassan, M. A. 2011. Changes in Physicochemical and Microbial Community during Co-Composting of Oil Palm Frond with Palm Oil Effluent Anaerobic Sludge. Bioresource. 6(4): 4762-4780
Okwute., Ojonoma, L., and Nnennaya, I. 2007. The Environmental Impact of Palm Oil Mill Effluent (POME) on Some Physico-Chemical Parameters and Total Aerobic Bioload of Soil at A Dump Site In Anyigba, Kogi State, Nigeria. African Journal of Agricultural Research. 2(12): 656-662
Haug, R. T. 1993. The Practical Handbook of Compost Engineering, Lewis Publisher, Boca Raton
Khalil, A. I., Hassouna, M. S., El-Ashqar, H. M. A., and Fawzi, M. 2011. Changes in Physical, Chemical and Microbial Parameters during the Composting of Municipal Sewage Sludge. World Journal Microbiological Biotechnology. 27: 2359-2369. DOI: http://dx.doi.org/10.1007/s11274-011 and H. 2001. Effect of Bulking Agent on the Reduction of NH3 Emissions during Thermophilic Composting of Night-Soil Sludge. Waste Management Resources. 19(4): 301-307
Mokhtari, M., Nikaeen, M., Amin, M. M., Bina, B., and Hasanzadeh, A. 2011. Evaluation of Stability Parameters in In-Vessel Composting of Municipal Solid Waste. Iran Journal Environment Health Science Engineering. 8(4): 325-332
Caceres, R., Flotats, X., and Marfa, O. 2006. Changes in the Chemical and Physicochemical Properties of the Solid Fraction of Cattle Slurry during Composting Using Different Aeration Strategies. Waste Management. 26: 1081-1091. DOI : http://dx.doi.org/10.1016/j.wasman.2005.06.013.
Gajalakshmi, S., and Abbasi, S. A. 2008. Solid Waste Management by Composting: State of the Art. Critical Review in Environmental Science and Technology. 38: 311-400. DOI: http://dx.doi.org/10.1080/10643380701413633.
Raclavska, H., Juchelkova, D., Skrobankova, H., Wiltowski, T., and Campe, A. 2011. Conditions for Energy Generation as an Alternative Approach to Compost Utilization. Environmental Technology. 32(4): 407-417. DOI: http://dx.doi.org/10.1080/09593330.2010.501089.
Sundberg, C., and Jonsson, H. 2008. Higher pH and Faster Decomposition in Biowaste Composting by Increased Aeration. Waste Management. 28: 518-526. DOI: http://dx.doi.org/10.1016/j.wasman.2007.01.011.
Ryckeboer, J., Mergaert, J., Vaes, K., Klammer, S., De Clercq, D., Coosemans, J., Insam, H., and Swings, J. 2003. A Survey of Bacteria and Fungi Occurring during Composting and Self-heating Process. Annals of Microbiology. 53(4): 349-410.
Tanpanich, S., Chindachia, R., and Duriyaprapan, S. 2009. Rate of Composting and Quality of Compost under Different Passively Aerated Composting. Supplement. 37: 153-161
Madan, S., Bhatia, A., Rajpal, A., and Kazmi, A. A. 2012. Maturity Assessment of Rotary Drum and Windrow Composts in Terms of Germination Index and Enzymatic Activities. International Journal of Applied Science and Engineering Research. 1(3): 415-426. DOI: http://dx.doi.org/10.6088/ijaser.0020101042.
Liang, C., Das, K. C., and McClendon, R. W. 2003. The Influence of Temperature and Moisture Contents Regimes on the Aerobic Microbial Activity of a Biosolids Composting Blend. Bioresource Technology. 86: 131-137. DOI: http://dx.doi.org/s0960-8524(02)00153-0.
Mohee, R., and Mudhoo, A. 2005. Analysis of the Physical Properties of an in-Vessel Composting Matrix. Powder Technology. 155: 92-99. DOI: http://dx.doi.org/10.1016/j.powtec.2005.05.051.
Hong, N., Chen, J., Zhang, X., and Chen, T. 2013. Effect of Turning on Moisture Content in Sewage Sludge Composting. Advanced Materials Research.
Iyengar, S. R., and Bhave, P. P. 2006. In-Vessel Composting of Household Waste. Waste Management. 26: 1070-1080. DOI: http://dx.doi.org/10.1016/j.wasman.2005.06.011.
Oviasogie, P. O., Aisueni, N. O., and Brown, G. E. 2010. Oil Palm Composted Biomass: A Review of the Preparation, Utilization, Handling and Storage. African Journal of Agricultural Research. 5(13): 1553-1571. DOI: http://dx.doi.org/10.5897/AJAR09.016.
Rasapoor, M., Nasrabadi, T., Kamali, M., and Hoveidi, H. 2009. The Effects of Aeration Rate on Generated Compost Quality, Using Aerated Static Pile Method. Waste Management. 29: 570-573. DOI: http://dx.doi.org/10.1016/j.wasman.2008.04.012.
Sommer, S. G. 2001. Effect of Composting on Nutrient Loss and Nitrogen Availability of Cattle Deep Litter. European Journal of Agronomy. 14: 123-133. DOI: http://dx.doi.org/S1161-0301(00)00087-3.
Solano, M. L., Iriarte, F., and Negro, M. J. 2001. Performance Characteristic of Three Aeration System in the Composting of Sheep Manure and Straw. Journal Agriculture Engineering Resource. 79(3): 317-329. DOI: http://dx.doi.org/10.1006/jaer.2001.0703.
Kraus, H. T., and Warren, S. L. 2000. Performance of Turkey Litter Compost as Slow-Release Fertilizer in Containerized Plant Production. Hort-Science. 35: 19
Barrington, S., Choiniere, D., Trigui, M., and Knight, W. 2003. Compost Convective Airflow under Passive Aeration. Bioresource Technology. 86: 259-266. DOI: http://dx.doi.org/S0960-8524(02)00155-4.
Kim, J. D. and Park, J. S. In, B. H., Kim, D., and Namkoong, W. 2008. Evaluation of Pilot-Scale In-Vessel Composting for Food Waste Treatment. Journal of Hazardous Materials. 154: 272-277. DOI: http://dx.doi.org/10.1016/j.jhazmat.2007.10.023.
Martin, A. M. 1999. Bioconversion of Waste Materials to Industrial Products. New York. Elsevier Publishers.
Li, X., Zhang, R., and Pang, Y. 2008. Characteristics of Dairy Manure Composting with Rice Straw. Bioresource Technology. 99: 359-36. DOI: http://dx.doi.org/10.1016/j.biortech.2006.12.009.
Erhart, E., and Burian, K. 1997. Evaluating Quality and Suppressiveness of Austrian Biowaste Compost. Compost Science Utilization. 5: 15.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.