EFFECTS OF PEBAX COATING CONCENTRATIONS ON CO2/CH4 SEPARATION OF RGO/ZIF-8 PES MEMBRANES

Authors

  • Najihah Jamil Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
  • Nur Hidayati Othman Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Munawar Zaman Shahrudin Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
  • Mohd Rizuan Mohd Razlan Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
  • Nur Hashimah Alias Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
  • Fauziah Marpani Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
  • Lau Woe Jye Advanced Membrane Technology Research Center (AMTEC), Faculty of Chemical and Energy Engineering, UTM, 81310 Johor Bahru, Johor, Malaysia
  • Pei Sean Goh Advanced Membrane Technology Research Center (AMTEC), Faculty of Chemical and Energy Engineering, UTM, 81310 Johor Bahru, Johor, Malaysia
  • Ahmad Fauzi Ismail Advanced Membrane Technology Research Center (AMTEC), Faculty of Chemical and Energy Engineering, UTM, 81310 Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v82.13872

Keywords:

Reduced Graphene Oxide, Zeolitic Imidazole Framework -8, Mixed Matrix Membrane, Polyethersulfone, Pebax

Abstract

The biggest challenge surrounding application of polymeric membranes for gas separation is their trade–off between gas permeation and selectivity. Therefore, the use of mixed matrix membranes (MMMs) comprising inorganic materials embedded into a polymer matrix can overcome this issue. In this work, PES flat sheet membrane and MMMs consists of 10 wt.% of rGO/ZIF-8 hybrid nanofillers were fabricated via dry/wet phase inversion process. Dipâ€coating technique was then used to deposit PEBAX selective layer onto the surface of rGO/ZIF-8 PES support. The effects of PEBAX coating solution concentrations (2, 3 and 4 wt.%) on the permselectivity of CO2 and CH4 were investigated. The as-prepared rGO/ZIF-8 nanofillers and MMMs were characterized by fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (SEM) prior to gas separation performance study. Gas permeation testing was carried out at operating pressure of 1, 3 and 5 bar using CO2 and CH4 gasses. It was observed that the prepared PES membranes and rGO/ZIF-8 PES MMMs did not have any selectivity towards the gases although their permeability was high. As the concentration of PEBAX coating solution increased, thicker coating layer was formed. Therefore, the permeability of CO2 rapidly dropped but the CO2/CH4 selectivity increased significantly up to 38.4.  Results indicated that the use of 2 wt.% of PEBAX was not effective to form homogenous coating layers on PES membrane and to cover any defects on membrane surfaces, thus, possessing low selectivity of CO2/CH4. The high gas separation performances obtained in this work was due to the synergistic effect rGO and ZIF-8 crystals. In the rGO/ZIF-8 MMMs, the dispersibility are enhanced due to the presence of distorted rGO sheets, while the ZIF-8 component ensure the porosity of the nanofillers and permit gas interactions with the metallic sites and functional groups on the organic linker. These sites facilitate the reactive adsorption leading to enhanced CO2 adsorption as compared to CH4.

References

A. S. Ruhl, A. Kranzmann. 2013. Investigation of Pipeline Corrosion in Pressurized CO2 Containing Impurities. Energy Procedia. 37: 3131-3136. doi:https://doi.org/10.1016/j.egypro.2013.06.199.

P. Babu, C. Y. Ho, R. Kumar, P. Linga. 2014. Enhanced Kinetics for the Clathrate Process in a Fixed Bed Reactor in the Presence of Liquid Promoters for Pre-combustion Carbon Dioxide Capture. Energy. 70: 664-673. doi:http://dx.doi.org/10.1016/j.energy.2014.04.053.

S. Bari. 1996. Effect of Carbon Dioxide on the Performance of Biogas/Diesel Duel-fuel Engine. doi:10.1016/0960-1481(96)88450-3.

J. K. Adewole, A. L. Ahmad, S. Ismail, C. P. Leo. 2013. Current Challenges in Membrane Separation of CO2 from Natural Gas: A Review. Int. J. Greenh. Gas Control. doi:10.1016/j.ijggc.2013.04.012.

R. W. Baker. 2002. Future Directions of Membrane Gas Separation Technology. Ind. Eng. Chem. Res. doi:10.1021/ie0108088.

A. F. Ismail, K. C. Khulbe, T. Matsuura. 2015. Gas Separation Membranes: Polymeric and Inorganic. doi:10.1007/978-3-319-01095-3.

A. F. Bushell, M. P. Attfield, C. R. Mason, P. M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. Carolus Jansen, M. LanÄ, K. Friess, V. Shantarovich, V. Gustov, V. Isaeva. 2013. Gas Permeation Parameters of Mixed Matrix Membranes Based on the Polymer of Intrinsic Microporosity PIM-1 and the Zeolitic Imidazolate Framework ZIF-8. J. Memb. Sci. doi:10.1016/j.memsci.2012.09.035.

Y. Zhang, X. Feng, S. Yuan, J. Zhou, B. Wang. 2016. Challenges and Recent Advances in MOF–polymer Composite Membranes for Gas Separation. Inorg. Chem. Front. doi:10.1039/C6QI00042H.

X. Sun, Y. Li, H. Xi, Q. Xia. 2014. Adsorption Performance of a MIL-101(Cr)/Graphite Oxide Composite for a Series of n-alkanes. RSC Adv. 4: 56216-56223. doi:10.1039/C4RA08598A.

S. M. Sanip, A. F. Ismail, P. S. Goh, T. Soga, M. Tanemura, H. Yasuhiko, Gas separation properties of functionalized carbon nanotubes mixed matrix membranes, Sep. Purif. Technol. (2011). doi:10.1016/j.seppur.2011.02.003.

A.F. Ismail, P.S. Goh, S.M. Sanip, M. Aziz. 2009. Transport and Separation Properties of Carbon Nanotube-mixed Matrix Membrane. Sep. Purif. Technol. doi:10.1016/j.seppur.2009.09.002.

T. D. Kusworo, B. Budiyono, A. F. Ismail, A. Mustafa. 2015. Fabrication and Characterization of Polyimide-CNTs Hybrid Membrane to Enhance High Performance CO2 Separation. Int. J. Sci. Eng. doi:10.12777/ijse.8.2.115-119.

V. Nafisi, M. B. Hägg. 2014. Development of Dual Layer of ZIF-8/PEBAX-2533 Mixed Matrix Membrane for CO2 Capture, J. Memb. Sci. doi:10.1016/j.memsci.2014.02.002.

G. Dong, J. Hou, J. Wang, Y. Zhang, V. Chen, J. Liu. 2016 Enhanced CO2/N2 Separation by Porous Reduced Graphene Oxide/Pebax Mixed Matrix Membranes. J. Memb. Sci. 520: 860-868. doi:10.1016/j.memsci.2016.08.059.

D. Huang, Q. Xin, Y. Ni, Y. Shuai, S. Wang, Y. Li, H. Ye, L. Lin, X. Ding, Y. Zhang. 2018. Synergistic Effects of Zeolite Imidazole Framework@Graphene Oxide Composites in Humidified Mixed Matrix Membranes on CO2 Separation. RSC Adv. 8: 6099-6109. doi:10.1039/C7RA09794H.

B. Zornoza, A. Martinez-joaristi, P. Serra-crespo, C. Tellez. 2011. Functionalized Flexible MOFs as Fillers in Mixed Matrix Membranes for Highly Selective Separation of CO2 from CH4 at Elevated Pressures w. 9522-9524. doi:10.1039/c1cc13431k.

E. V. Perez, K. J. Balkus, J. P. Ferraris, I. H. Musselman. 2009. Mixed-matrix membranes Containing MOF-5 for Gas Separations. J. Memb. Sci. doi:10.1016/j.memsci.2008.12.006.

E. Environ, Q. Song, S.K. Nataraj, M. V Roussenova, C. Tan, D. J. Hughes, W. Li, P. Bourgoin, M. A. Alam, A. K. Cheetham, S. A. Al-muhtaseb, E. Sivaniah. 2012. Zeolitic Imidazolate Framework (ZIF-8) Based Polymer Nanocomposite Membranes for Gas Separation. 8359-8369. doi:10.1039/c2ee21996d.

W. Yuan, J. Chen, G. Shi. 2014. Nanoporous Graphene Materials. Mater. Today. 17: 77-85. doi:10.1016/j.mattod.2014.01.021.

G. Yu, J. Xia, F. Zhang, Z. Wang. 2017. Hierarchical and Hybrid RGO/ZIF-8 Nanocomposite as Electrochemical Sensor for Ultrasensitive Determination of Dopamine. J. Electroanal. Chem. 801: 496-502. doi:https://doi.org/10.1016/j.jelechem.2017.08.038.

M. S. A. Wahab. 2018. The Effect Number of Pebax ® 1657 Coating Layer on Thin Film Composite (TFC) Membrane for CO2/N2 Separation. Chiang Mai Journal of Science. 45 (1): 484-491

M. F Zainuddin, N. R. Nik Him, N. Othman, W. F H Abdullah. 2018. Synthesis of Reduced Graphene Oxide (rGO) Using different Treatments of Graphene Oxide (GO). doi:10.1088/1757-899X/358/1/012046.

S. H. M. Akhair, Z. Harun, M. R. Jamalludin, M. F. Shuhor, N. H. Kamarudin, M. Z. Yunos, A. Ahmad, M. F. H. Azhar. 2017. Polymer Mixed Matrix Membrane with Graphene Oxide for Humic Acid Performances. Chem. Eng. Trans. 56: 697-702. doi:10.3303/CET1756117.

N. Jamil, N. H. Othman, N. H. Alias, M. Z. Shahruddin, R. Azwa, W. J. Lau, A. F. Ismail. 2018. Mixed Matrix Membranes Incorporated with Reduced Graphene Oxide (rGO) and Zeolitic Imidazole Framework-8 (ZIF-8) Nanofillers for Gas Separation. J. Solid State Chem. 8. doi:10.1016/j.jssc.2018.11.028.

M. Sadrzadeh, M. Amirilargani, K. Shahidi, T. Mohammadi. 2009. Gas Permeation through a Synthesized Composite PDMS/PES Membrane. J. Memb. Sci. 342: 236-250. doi:https://doi.org/10.1016/j.memsci.2009.06.047.

H. Wang, Y. Wang, A. Jia, C. Wang, L. Wu, Y. Yang, Y. Wang. 2017. A Novel Bifunctional Pd–ZIF-8/rGO Catalyst with Spatially Separated Active Sites for the Tandem Knoevenagel Condensation–reduction Reaction. Catal. Sci. Technol. 7: 5572-5584. doi:10.1039/C7CY01725A.

O. Karagiaridi, M. B. Lalonde, W. Bury, A. A. Sarjeant, O. K. Farha, J. T. Hupp. 2012. Opening ZIF-8: A Catalytically Active Zeolitic Imidazolate Framework of Sodalite Topology with Unsubstituted Linkers. J. Am. Chem. Soc. doi:10.1021/ja308786r.

D. Kim, D. W. Kim, W. G. Hong, A. Coskun. 2016. Graphene/ZIF-8 Composites with Tunable Hierarchical Porosity and Electrical Conductivity. J. Mater. Chem. A Mater. Energy Sustain. 4: 7710-7717. doi:10.1039/C6TA01899H.

M. Alumina, C. Ii, B. Gohari, N. Abu-zahra. 2018. Polyethersulfone Membranes Prepared with 3-Aminopropyltriethoxysilane Polyethersulfone Membranes Prepared with 3 ‑ Aminopropyltriethoxysilane Modified Alumina Nanoparticles for Cu (II) Removal from Water. ACS Omega. 3: 10154-10162. doi:10.1021/acsomega.8b01024.

L. Bai. 2017. Pebax-based Composite Membranes with High Gas Transport Properties Enhanced by Ionic Liquids for CO2 Separation. RSC Adv. 7: 6422-6431. doi:10.1039/C6RA27221E.

J. Garcia, M. I. Iborra-Clar, M.-I. Alcaina-Miranda, J.-A. Mendoza-Roca, L. Pastor-Alcañiz. 2014. Development of Fouling-resistant Polyethersulfone Ultrafiltration Membranes via Surface UV Photografting with Polyethylene Glycol/aluminum Oxide Nanoparticles. Separation and Purification Technology. 135: 88-99doi:10.1016/j.seppur.2014.07.056.

N. Ghaemi, S. S. Madaeni, A. Alizadeh, H. Rajabi, P. Daraei. 2011. Preparation, Characterization and Performance of Polyethersulfone/Organically Modified Montmorillonite Nanocomposite Membranes in Removal of Pesticides. J. Memb. Sci. 382: 135-147. doi:https://doi.org/10.1016/j.memsci.2011.08.004.

C. Özgen. 2012. Production and Performance Evaluation of ZIF-8 Based Binary and Ternary Mixed Matrix Gas Separation Membranes. Thesis of Graduate School of Natural and Applied Sciences. Middle East Technical University.

T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja. 2007. Mixed Matrix Membranes (MMMs) Comprising Organic Polymers with Dispersed Inorganic Fillers for Gas Separation. Prog. Polym. Sci. 32: 483-507. doi:https://doi.org/10.1016/j.progpolymsci.2007.01.008.

D. Şen, H. Kalıpçılar, L. Yilmaz. 2007. Development of Polycarbonate Based Zeolite 4A Filled Mixed Matrix Gas Separation Membranes. J. Memb. Sci. 303: 194-203. doi:https://doi.org/10.1016/j.memsci.2007.07.010.

Y. Chen, B. Wang, L. Zhao, P. Dutta, W.S. Winston Ho. 2015. New Pebax®/zeolite Y Composite Membranes for CO2 Capture From Flue Gas. J. Memb. Sci. 495: 415-423. doi:https://doi.org/10.1016/j.memsci.2015.08.045.

H. Mahdavi, F. Moradi-Garakani. 2017. Effect of Mixed Matrix Membranes Comprising a Novel Trinuclear Zinc MOF, Fumed Silica Nanoparticles and PES on CO2/CH4 Separation. Chem. Eng. Res. Des. 125: 156-165. doi:https://doi.org/10.1016/j.cherd.2017.07.007.

M. Rezakazemi, A.E. Amooghin, M.M. Montazer-Rahmati, A.F. Ismail, T. Matsuura. 2014. State-of-the-art Membrane Based CO2 Separation Using Mixed Matrix Membranes (MMMs): An Overview on Current Status and Future Directions. 39: 817-861. doi:10.1016/j.progpolymsci.2014.01.003.

R. Lin, L. Ge, S. Liu, V. Rudolph, Z. Zhu. 2015. Mixed-matrix Membranes with Metal–organic Framework-decorated CNT Fillers for Efficient CO2 Separation. ACS Appl. Mater. Interfaces. 7: 14750-14757. doi:10.1021/acsami.5b02680.

J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis, G. Romanos, G. N. Karanikolos. 2018. CO2 Adsorption Behavior of Amine-functionalized ZIF-8, Graphene Oxide, and ZIF-8/graphene oxide Composites Under Dry and Wet Conditions. Microporous Mesoporous Mater. doi:10.1016/j.micromeso.2018.03.012.

R. Azwa Roslan, W.J. Lau, D. Barathi Sakthivel, S. Khademi, Z. Abdul Karim, P. Sean Goh, A. Ismail, K. Chong, S.-O. Lai. 2018. Separation of CO2/CH4 and O2/N2 by Polysulfone Hollow Fiber Membranes: Effects of Membrane Support Properties and Surface Coating Materials. doi:10.1515/polyeng-2017-0272.

Y. Dai, X. Ruan, Z. Yan, K. Yang, M. Yu, H. Li, W. Zhao, G. He. 2016. Imidazole functionalized Graphene Oxide/PEBAX Mixed Matrix Membranes for Efficient CO2 Capture. Sep. Purif. Technol. 166: 171-180. doi:https://doi.org/10.1016/j.seppur.2016.04.038.

A. Jomekian, R.M. Behbahani, T. Mohammadi, A. Kargari. 2016. CO2/CH4 Separation by High Performance Co-casted ZIF-8/Pebax 1657/PES Mixed Matrix Membrane. J. Nat. Gas Sci. Eng. 31: 562-574. doi:https://doi.org/10.1016/j.jngse.2016.03.067.

Downloads

Published

2020-02-03

Issue

Section

Science and Engineering

How to Cite

EFFECTS OF PEBAX COATING CONCENTRATIONS ON CO2/CH4 SEPARATION OF RGO/ZIF-8 PES MEMBRANES. (2020). Jurnal Teknologi, 82(2). https://doi.org/10.11113/jt.v82.13872