SEA LEVEL ANOMALY ASSESSMENT OF SARAL/ALTIKA MISSION USING HIGH AND LOW RESOLUTION DATA
DOI:
https://doi.org/10.11113/jt.v82.13882Keywords:
Sea level anomaly, high resolution, low resolution, satellite altimeter, distance to coastAbstract
Peninsular Malaysia is located at the focal point of Sunda Shelf, encompassed by the South China Sea to the East and by Andaman Sea at Indian Ocean in the west that causes various phenomena relevant to sea level along Malaysian coast. When the monsoons strike, the effect of wind and other factors will change the variability of Sea Level Anomaly (SLA) along coastal Malaysia. Traditionally, sea level change is observed using tide gauge installed along Malaysian coastal area. However, the data obtained is limited to the tide gauge station area, the sea level data for the deep sea cannot be obtained and there is no long-term record of observation. Therefore, satellite altimeter is used as a new alternative which enables sea level data to be obtained from space observation and to monitor SLA via SARAL/AltiKa which available since 2013, thus complementing the tide gauge. The aim of this study is to derive SLA parameter from high and low resolution of satellite altimetry data. This study involved the acquisition of SLA data by using RADS and PEACHI (AVISO) database system from satellite mission SARAL/AltiKa. Sequentially, SLA data has been analysed and evaluated based on tide gauge data provided by using UHSLC system. Comparison between the high resolution (PEACHI) and low resolution (RADS) data has been made to evaluate the density of altimetry data in term of distance to coast. As a result, high resolution (PEACHI) data are more accurate for coastal application with root mean square error (RMSE) of ±0.14 metre level. The analysis shows that the footprint of high resolution altimetry data is denser than the low resolution altimetry data. Data from distance to coast for PEACHI achieved a satisfactory standard deviation of residual, which is ranged between 0cm to 1.04cm as compared to altimetry RADS which is ranged 0.34cm to 12.57cm. The results can be used by various agencies in planning and developing Malaysian coastal areas as well as in assisting the development of community economies such as fishery and tourism activities.
References
Luu, Q. H., Tkalich, P., & Tay, T. W. 2015. Sea Level Trend and Variability Around Peninsular Malaysia. Ocean Science. 11(4): 617-628.
Ehsan, M. R. M., Din, A. H. M., Hamid, A. A. and Adzmi, N. H. M. 2019. Interpretation of Sea Level Variability Over Malaysian Seas Using Multi-mission Satellite Altimetry Data. ASM Science Journal. 12(Issue Special Issue 2): 90-99.
Chaudhary, A., Agarwal, N., & Sharma, R. 2014. Estimation of Currents using SARAL/AltiKa in the Coastal Regions of India. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 40(8): 1365.
Kamaruddin, A. H., Din, A. H. M., Pa'Suya, M. F. and Omar, K. M. 2017. Long-term Sea Level Trend from Tidal Data in Malaysia. 7th IEEE Control and System Graduate Research Colloquium, ICSGRC 2016 – Proceeding 7813325. 187-192. DOI: 10.1109/ICSGRC.2016.7813325.
Din, A. H. M., Hamid, A. I. A., Yazid, N. M., Tugi, A., Khalid, N. F., Omar, K. M. and Ahmad, A. 2017. Malaysian Sea Water Level Pattern Derived from 19 Years Tidal Data. Jurnal Teknologi. 79(5): 137-145. DOI: 10.11113/jt.v79.9908.
Din, A. H. M., Zulkifli, N. A., Hamden, M.H. and Aris, W. A. W 2019. Sea Level Trend Over Malaysian Seas from Multi-mission Satellite Altimetry and Vertical Land Motion Corrected Tidal Data. Advances in Space Research. 63(11): 3452-3472. DOI: 10.1016/j.asr.2019.02.022.
Ratheesh, Smitha, Rashmi Sharma, K. V. S. R. Prasad and Sujit Basu. 2015. Impact of SARAL/AltiKa – Derived Sea Level Anomaly in a Data Assimilative Ocean Prediction System for the Indian Ocean. Marine Geodesy.00-00. doi: 10.1080/01490419.2014.988833.
Troupin, Charles, Ananda Pascual, Guillaume Valladeau, Isabelle Pujol, Arancha Lana, Emma Heslop, Simón Ruiz, Marc Torner, Nicolas Picot and JoaquÃn Tintoré. 2015. Illustration of the Emerging Capabilities of SARAL/AltiKa in the Coastal Zone using a Multi-platform Approach. Advances in Space Research. 55(1): 51-59. Doi: 10.1016/j.asr.2014.09.011.
Dibarboure, G., Boy, F., Desjonqueres, J. D., Labroue, S., Lasne, Y., Picot, N., Poisson, J.C. & Thibaut, P. 2014. Investigating Short-wavelength Correlated Errors on Low-resolution Mode Altimetry. Journal of Atmospheric and Oceanic Technology. 31(6): 1337-1362
AVISO. 2019. Aviso.altimetry.fr. (2019). Basic Principle: Aviso+. [online] Available at: https://www.aviso.altimetry.fr/en/applications.html [Accessed 9 January. 2019].
Din, A. H. M., Ses, S., Omar, K. M., Naeije, M., Yaakob, O., & Pa’suya, M. F. 2014. Derivation of Sea Level Anomaly Based on the Best Range and Geophysical Corrections for Malaysian Seas Using Radar Altimeter Database System (RADS). Jurnal Teknologi. 71(4).
Fu, L., and Cazenave. A. 2001. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications. Academic Press. San Diego, California.
Idris, N. H., Deng, X., Md Din, A. H. and Idris, N. H. 2017. CAWRES: A Waveform Retracking Fuzzy Expert System for Optimizing Coastal Sea Levels from Jason-1 and Jason-2 Satellite Altimetry Data. Remote Sensing. 9(6). Article number 603. DOI: 10.3390/rs9060603.
Wang, X., & Ichikawa, K. 2017. Coastal Waveform Retracking for Jason-2 Altimeter Data Based on Along-track Echograms Around the Tsushima Islands in Japan. Remote Sensing. 9(7), 762.
Gommenginger, C., Thibaut, P., Fenoglio-Marc, L., Quartly, G., Deng, X., Gómez-Enri, J., Challenor, P. & Gao, Y. 2011. Retracking Altimeter Waveforms Near the Coasts. Coastal Altimetry. Springer, Berlin, Heidelberg. 61-101.
Google Maps. Malaysia. Accessed May 5, 2019. https://earth.google.com/web/@4.140634,109.6181485,12.48081884a,2967850.85179216d,35y,0h,0t,0r/data=ChMaEQoJL20vMDlwbWt2GAIgASgC.
RADS. 2019. Radar Altimeter Data Acquisition from RADS: TUDelft. [online] Available at: http://rads.tudelft.nl/rads/data/authentication.cgi.
AVISO+ User Services. 2017. Along-track Level-2+ (L2P) SLA Sentinel-3A Product Handbook. CLS 8-10 rue Hermès Parc Technologique du canal F-31520 Ramonville Cedex France.
AVISO. 2019. Aviso.altimetry.fr. (2019). Basic Principle: Aviso+. [online] Available at: https://www.aviso.altimetry.fr/index.php?id=3116 [Accessed 10 January. 2019].
UHSLC. 2019. Obtaining UHSLC Data: legacy data portal. [online] Available at: http://uhslc.soest.hawaii.edu/data/ [Accessed 9 January. 2019].
Hamid, A. I. A., Din, A. H. M., Hwang, C., Khalid, N. F., Tugi, A. and Omar, K. M. 2018. Contemporary Sea Level Rise Rates Around Malaysia: Altimeter Data Optimization For Assessing Coastal Impact. Journal of Asian Earth Sciences. 166: 247-259. DOI: 10.1016/j.jseaes.2018.07.034.
Deni, S. M., Jemain, A. A., & Ibrahim, K. 2010. The Best Probability Models for Dry and Wet Spells in Peninsular Malaysia During Monsoon Seasons. International Journal of Climatology. 30(8): 1194-1205.
Suhaila, J., Deni, S. M., Zin, W. W., & Jemain, A. A. 2010. Trends in Peninsular Malaysia Rainfall Data During the Southwest Monsoon and Northeast Monsoon Seasons: 1975–2004. Sains Malaysiana. 39(4): 533-542.
Husain, M. L., Yaakob, R., & Saad, S. 1995. Beach Erosion Variability During a Northeast Monsoon: The Kuala Setiu Coastline, Terengganu, Malaysia. Pertanika Journal of Science and Technology. 3(2): 337-348.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.