A SYNCHRONIZATION LOSS DETECTION METHOD FOR PMSM SPEED SENSORLESS CONTROL

Authors

  • Bernadeta Wuri Harini Electrical Engineering, Universitas Indonesia, Kampus UI Depok 16424, West Java, Indonesia
  • Faiz Husnayain Electrical Engineering, Universitas Indonesia, Kampus UI Depok 16424, West Java, Indonesia
  • Aries Subiantoro Electrical Engineering, Universitas Indonesia, Kampus UI Depok 16424, West Java, Indonesia
  • Feri Yusivar Electrical Engineering, Universitas Indonesia, Kampus UI Depok 16424, West Java, Indonesia

DOI:

https://doi.org/10.11113/jt.v82.14369

Keywords:

Control, sensorless, detection, synchronization, load

Abstract

Permanent Magnet Synchronous Motor (PMSM) is an AC motor in which the rotor must operate at synchronous speed in all load conditions. If the motor mechanical load increases, the motor can lose synchronization, stopping the motor. In sensorless control systems, i.e., those without speed sensors, the speed is estimated from the stator current using the Model Reference Adaptive System (MRAS) algorithm.   Because such systems therefore cannot detect the loss of synchronization, it is necessary to design a synchronization loss detection system.  Here, another speed estimation calculated from the stator currents and voltages is introduced.  The speed is called a calculated speed.  In the normal condition (synchronous condition), estimated speed and calculated speed will be approximately equal.  However, when synchronization loss occurs, these two speed values diverge.  On the basis of this phenomenon, a synchronization loss detection algorithm and method are developed.  The algorithm’s speed-delta boundary values and detection period must be determined. The greater the setpoint speed, the higher the speed-delta boundary values but the smaller the detection period. The experiments confirm that the proposed algorithm is able to effectively detect the occurrence of synchronization loss.

References

M. Yilmaz. 2015. Limitations/Capabilities of Electric Machine Technologies and Modeling Approaches for Electric Motor Design and Analysis in Plug-in Electric Vehicle Applications. Renewable and Sustainable Energy Reviews. 52: 80-99.

DOI: https://doi.org/10.1016/j.rser.2015.07.033.

E. Edge. 2000. Synchronous Motor Starting Review. Book/journal?

P. Vas. 1998. Sensorless Vector and Direct Torque Control. Oxford University Press, USA.

F. Semiconductor. 2008. Sensorless PMSM Vector Control with a Sliding Mode Observer for Compressors Using MC56F8013. Document Number.

B. W. Harini, N. Avianto, and F. Yusivar. 2018. Effect of Initial Rotor Position on Rotor Flux Oriented Speed Permanent Magnet Synchronous Motor Control using Incremental Encoder. Proceeding in 2018 2nd International Conference on Smart Grid and Smart Cities (ICSGSC). 95-99.

DOI: https://doi.org/10.1109/ICSGSC.2018.8541305.

B. W. Harini, A. Subiantoro, and F. Yusivar. 2017. Study of Speed Sensorless Permanent Magnet Synchronous Motor (PMSM) Control Problem Due to Braking During Steady State Condition. Proceeding in Quality in Research (QiR): International Symposium on Electrical and Computer Engineering, 2017 15th International Conference on. 184-189.

DOI: https://doi.org/10.1109/QIR.2017.8168479.

F. Yusivar, R. Suryadiningrat, A. Subiantoro, and R. Gunawan. 2014. Single Phase PV Grid-Connected in Smart Household Energy System with Anticipation on Fault Conditions. International Journal of Power Electronics and Drive Systems. 4: 100.

DOI: https://doi.org/10.11591/ijpeds.v4i1.5368.

G. H. B. Foo, X. Zhang, and D. M. Vilathgamuwa. 2013. A Sensor Fault Detection and Isolation Method in Interior Permanent-magnet Synchronous Motor Drives Based on an Extended Kalman Filter. IEEE Transactions on Industrial Electronics. 60: 3485-3495.

DOI: https://doi.org/10.1109/TIE.2013.2244537.

G. Bisheimer, C. De Angelo, J. Solsona, and G. Garcia. 2008. Sensorless PMSM Drive with Tolerance to Current Sensor Faults. Proceeding in 2008 34th Annual Conference of IEEE Industrial Electronics. 1379-1384.

DOI: https://doi.org/10.1109/IECON.2008.4758155.

M. Dybkowski, K. Klimkowski, and T. Orlowska-Kowalska. 2014. Speed Sensor Fault Tolerant Direct Torque Control of Induction Motor Drive. Proceeding in 2014 16th International Power Electronics and Motion Control Conference and Exposition. 679-684.

DOI: https://doi.org/10.1109/EPEPEMC.2014.6980574.

M. E. H. Benbouzid, D. Diallo, and M. Zeraoulia. 2007. Advanced Fault-tolerant Control of Induction-motor Drives for EV/HEV Traction Applications: From Conventional to Modern and Intelligent Control Techniques. IEEE Transactions on Vehicular Technology. 56: 519-528.

DOI: https://doi.org/10.1109/TVT.2006.889579.

M. Romero, M. Seron, and J. De Dona. 2010. Sensor Fault-Tolerant Vector Control of Induction Motors. IET Control Theory & Applications. 4: 1707-1724.

DOI: https://doi.org/10.1049/iet-cta.2009.0464.

K. Rothenhagen and F. W. Fuchs. 2009. Current Sensor Fault Detection, Isolation, and Reconfiguration for Doubly Fed Induction Generators. IEEE Transactions on Industrial Electronics. 56: 4239-4245.

DOI: https://doi.org/10.1109/TIE.2009.2017562.

S. Karimi, A. Gaillard, P. Poure, and S. Saadate. 2009. Current Sensor Fault-tolerant Control for WECS with DFIG. IEEE Transactions on Industrial Electronics. 56: 4660-4670.

DOI: https://doi.org/10.1109/TIE.2009.2031193.

T. A. Najafabadi, F. R. Salmasi, and P. Jabehdar-Maralani. 2010. Detection and Isolation of Speed-, DC-link Voltage-, and Current-sensor Faults based on an Adaptive Observer in Induction-motor Drives. IEEE Transactions on Industrial Electronics. 58: 1662-1672.

DOI: https://doi.org/10.1109/TIE.2010.2055775.

H. Berriri, M. W. Naouar, and I. Slama-Belkhodja. 2011. Easy and Fast Sensor Fault Detection and Isolation Algorithm for Electrical Drives. IEEE Transactions on Power Electronics. 27: 490-499.

DOI: https://doi.org/10.1109/TPEL.2011.2140333.

P. Strankowski and J. Guziński. 2016. Sensorless Fault Detection of Induction Motor with Inverter Output Filter. Progress in Applied Electrical Engineering (PAEE). 1-6.

DOI: https://doi.org/10.1109/PAEE.2016.7605104.

N. Torabi, V. M. Sundaram, and H. A. Toliyat. 2017. On-line Fault Diagnosis of Multi-phase Drives using Self-recurrent Wavelet Neural Networks with Adaptive Learning Rates. Proceeding in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC). 570-577.

DOI: https://doi.org/10.1109/APEC.2017.7930751.

A. Shaeboub, S. Abusaad, N. Hu, F. Gu, and A. D. Ball. 2015. Detection and Diagnosis of Motor Stator Faults using Electric Signals from Variable Speed Drives. Proceeding in 2015 21st International Conference on Automation and Computing (ICAC). 1-6.

DOI: https://doi.org/10.1109/IConAC.2015.7313938.

M. Trabelsi and M. Boussak. 2014. Sensorless Speed Control of VSI-fed Induction Motor Drive under IGBT Open-switch Damage: Performances and Fault Tolerant Analysis. Proceeding in 2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM). 1-8.

DOI: https://doi.org/10.1109/CISTEM.2014.7368727.

M. Nemec, K. Drobnic, D. Nedeljkovic, R. Fiser, and V. Ambrozic. 2009. Detection of Broken Bars in Induction Motor through the Analysis of Supply Voltage Modulation. IEEE Transactions on Industrial Electronics. 57: 2879-2888. DOI: https://doi.org/10.1109/TIE.2009.2035991.

M. Barcaro, A. Faggion, N. Bianchi, and S. Bolognani. 2012. Sensorless Rotor Position Detection Capability of a Dual Three-phase Fractional-slot IPM Machine. IEEE Transactions on Industry Applications. 48: 2068-2078.

DOI: https://doi.org/10.1109/TIA.2012.2226222.

S.-C. Agarlita, C.-E. Coman, G.-D. Andreescu, and I. Boldea. 2013. Stable V/f Control System with Controlled Power Factor Angle for Permanent Magnet Synchronous Motor Drives. IET Electric Power Applications. 7: 278-286.

DOI: https://doi.org/10.1049/iet-epa.2012.0392.

H. Wei, H. Tao, F. Duan, Y. Zhang, Y. Li, and Z. Luo. 2018. Sensorless Current Model Control for Permanent Magnet Synchronous Motor based on IPID with Two-dimensional Cloud Model Online Optimization. IET Power Electronics. 12: 983-993.

DOI: ttps://doi.org/10.1049/iet-pel.2018.5892.

A. Consoli, A. Gaeta, G. Scarcella, G. Scelba, and A. Testa. 2010. HF Injection-based Sensorless Technique for Fault-tolerant IPMSM Drives. Proceeding in 2010 IEEE Energy Conversion Congress and Exposition. 3131-3138.

DOI: https://doi.org/10.1109/ECCE.2010.5618459.

A. Glumineau and J. de León Morales. 2015. Sensorless AC Electric Motor Control. Springer.

DOI: https://doi.org/10.1007/978-3-319-14586-0.

B. W. Harini, A. Subiantoro, and F. Yusivar. 2017. Stability Analysis of MRAS Speed Sensorless Control of Permanent Magnet Synchronous Motor. Proceeding in 2017 International Conference on Sustainable Energy Engineering and Application (ICSEEA), 2017. 34-40.

DOI: https://doi.org/10.1109/ICSEEA.2017.

Downloads

Published

2020-05-22

Issue

Section

Science and Engineering

How to Cite

A SYNCHRONIZATION LOSS DETECTION METHOD FOR PMSM SPEED SENSORLESS CONTROL. (2020). Jurnal Teknologi (Sciences & Engineering), 82(4). https://doi.org/10.11113/jt.v82.14369