INHIBITION OF LIPOXYGENASES AND CYCLOOXYGENASES BY Momordica charantia

Authors

  • A Rafidah A Mohd Yunos Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, 84600 Pagoh, Muar, Johor, Malaysia
  • Muhammad Helmi Nadri Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, 84600 Pagoh, Muar, Johor, Malaysia School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohamad Roji Sarmidi Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, 84600 Pagoh, Muar, Johor, Malaysia School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Kian-Kai Cheng Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, 84600 Pagoh, Muar, Johor, Malaysia School of Chemical & Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v82.14555

Keywords:

Momordica charantia, anti-inflammatory, cyclooxygenase, lipoxygenase

Abstract

Momordica charantia (MC) is a climber belongs to the Cucurbitaceae family. While there are accumulating evidences showing its pharmacological activities, the effects of fractionation and processing on its anti-inflammatory activity have not been fully elucidated. In this study, we aimed to investigate the anti-inflammatory effects of MC raw juice and fractions from MC fruit extract and to evaluate the effect of processing methods on its anti-inflammatory activity. First, MC juice was extracted using a conventional juicer (raw juice) and fractionated using a solid phase extraction method into five fractions; strong acid, weak acid, neutral, weak base, and strong base fractions. The raw juice and its fractions then were tested for their anti-inflammatory activities including cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), and 15-lipoxygenase (15-LOX) inhibition assays. The results showed that the COX-1 inhibition activity of MC can be attributed to the neutral metabolites (52.60% inhibition). In contrast, the anti-COX-2 activity of MC was found exerted collectively by metabolites in multiple fractions (strong base, neutral, strong acid fractions). Contrarily, metabolites from all five fractions contributed to the MC inhibition activities on 5-LOX (55.51% inhibition for raw juice) and 15-LOX (55.3% inhibition for raw juice). Additionally, the current findings showed that the juice processing technique influenced the plant bioactivity, where juice extract obtained from slow juicer showed consistently higher anti-inflammatory activities than juice from conventional juicer. In summary, the current study provided evidences of anti-inflammatory action of MC and its fractions, which may contribute towards an improved processing and fractionation strategy.

References

Hadagali, M. D. and Chua, L. S. 2014. The Anti-inflammatory and Wound Healing Properties of Honey. European Food Research and Technology. 239(6): 1003-1014.

Verdam, M. C. S., Guilhon-Simplicio, F., Barbosa, G. S., Magalhães, A. L., Oliveira, C. I., Almeida, P., Machado, T. M., Vasconcellos, M. C., Lima, E. S., Ohana, D. T. and Pereira, M. M. 2015. Anti-inflammatory Action of Justicia acuminatissima Leaves. Revista Brasileira de Farmacognosia. 25(3): 264-268.

Libby, P. 2006. Inflammation and Cardiovascular Disease Mechanisms. The American Journal of Clinical Nutrition. 83(2): 456S-460S.

Solinas, G., Marchesi, F., Garlanda, C., Mantovani, A. and Allavena, P. 2010. Inflammation-mediated Promotion of Invasion and Metastasis. Cancer and Metastasis Reviews. 29(2): 243-248.

Li, P., Bandyopadhyay, G., Lagakos, W.S., Talukdar, S., Osborn, O., Johnson, A., Chung, H., Mayoral, R., Maris, M., Ofrecio, J. M. and Taguchi, S. 2015. LTB4 Promotes Insulin Resistance in Obese Mice by Acting on Macrophages, Hepatocytes and Myocytes. Nature Medicine. 21(3): 239-247.

Ibrahim, S. R., Mohamed, G. A., Alshali, K. Z., Haidari, R. A. A., El-Kholy, A. A. and Zayed, M. F. 2018. Lipoxygenase Inhibitors Flavonoids from Cyperus rotundus Aerial Parts. Revista Brasileira de Farmacognosia. 28(3): 320-324.

Al-Attas, A. A., El-Shaer, N. S., Mohamed, G. A., Ibrahim, S. R. and Esmat, A. 2015. Anti-inflammatory Sesquiterpenes from Costus Speciosus Rhizomes. Journal of Ethnopharmacology.176: 365-374.

Nguyen, T. Y., To, D. C., Tran, M. H., Lee, J. S., Lee, J. H., Kim, J. A., Woo, M. H. and Min, B. S. 2015. Anti-inflammatory Flavonoids Isolated from Passiflora foetida. Natural Product Communications. 10(6): 1934578X1501000634.

Haeggström, J. Z. and Funk, C. D. 2011. Lipoxygenase and Leukotriene Pathways: Biochemistry, Biology, and Roles in Disease. Chemical Reviews. 111(10): 5866-5898.

Rumzhum, N. N. and Ammit, A. J. 2016. Cyclooxygenase 2: Its Regulation, Role and Impact in Airway Inflammation. Clinical & Experimental Allergy. 46(3): 397-410.

Hawkey, C. J. 2001. COX-1 and COX-2 Inhibitors. Best Practice & Research Clinical Gastroenterology. 15(5): 801-820.

Wisastra, R. and Dekker, F. J. 2014. Inflammation, Cancer and Oxidative Lipoxygenase Activity are Intimately Linked. Cancers. 6(3): 1500-1521.

Joshi, Y. B. and Praticò, D. 2015. The 5-lipoxygenase Pathway: Oxidative and Inflammatory Contributions to the Alzheimer’s Disease Phenotype. Frontiers in Cellular Neuroscience. 8: 436.

Chung, L. Y., Soo, W. K., Chan, K. Y., Mustafa, M. R., Goh, S. H. and Imiyabir, Z. 2009. Lipoxygenase Inhibiting Activity of Some Malaysian Plants. Pharmaceutical Biology. 47(12): 1142-1148.

Kanaoka, Y. and Boyce, J. A. 2014. Cysteinyl Leukotrienes and Their Receptors; Emerging Concepts. Allergy, Asthma & Immunology Research. 6(4): 288-295.

Fürst, R. and Zündorf, I. 2015. Plant-derived Anti-inflammatory Compounds: Hopes and Disappointments Regarding the Translation of Preclinical Knowledge into Clinical Progress. Mediators of inflammation. 2014.

Iftikhar, H. and Rashid, S., 2014. Molecular Docking Studies of Flavonoids for Their Inhibition Pattern against β-catenin and Pharmacophore Model Generation from Experimentally Known Flavonoids to Fabricate More Potent Inhibitors for Wnt Signaling Pathway. Pharmacognosy Magazine. 10(Suppl 2): S264.

Dwijayanti, D. R., Shimada, T., Ishii, T., Okuyama, T., Ikeya, Y., Mukai, E. and Nishizawa, M. 2020. Bitter Melon Fruit Extract Has a Hypoglycemic Effect and Reduces Hepatic Lipid Accumulation in ob/ob Mice. Phytotherapy Research. 34(6): 1338-1346.

Tan, S. P., Kha, T. C., Parks, S. E. and Roach, P. D. 2016. Bitter Melon (Momordica charantia L.) Bioactive Composition and Health Benefits: A Review. Food Reviews International. 32(2): 181-202.

Grover, J. K. and Yadav, S. P. 2004. Pharmacological Actions and Potential Uses of Momordica Charantia: A Review. Journal of Ethnopharmacology. 93(1): 123-132.

Tan, H. F. and Gan, C. Y. 2016. Polysaccharide with Antioxidant, α-amylase Inhibitory and ACE Inhibitory Activities from Momordica charantia. International Journal of Biological Macromolecules. 85: 487-496.

Li, Z., Xia, A., Li, S., Yang, G., Jin, W., Zhang, M. and Wang, S. 2020. The Pharmacological Properties and Therapeutic Use of Bitter Melon (Momordica charantia L.). Current Pharmacology Reports. 1-7.

Fuangchan, A., Sonthisombat, P., Seubnukarn, T., Chanouan, R., Chotchaisuwat, P., Sirigulsatien, V., Ingkaninan, K., Plianbangchang, P. and Haines, S. T. 2011. Hypoglycemic Effect of Bitter Melon Compared with Metformin in Newly Diagnosed Type 2 Diabetes Patients. Journal of Ethnopharmacology. 134(2): 422-428.

Hasan, I. and Khatoon, S. 2012. Effect of Momordica charantia (bitter gourd) Tablets in Diabetes Mellitus: Type 1 and Type 2. Prime Res Med (PROM). 2(2): 72-74.

Perumal, V., Khoo, W. C., Abdul-Hamid, A., Ismail, A., Saari, K., Murugesu, S., Abas, F., Ismail, I. S., Lajis, N. H., Mushtaq, M. Y. and Khatib, A. 2015. Evaluation of Antidiabetic Properties of Momordica charantia in Streptozotocin Induced Diabetic Rats Using Metabolomics Approach. International Food Research Journal. 22(3): 1298.

Xu, X., Shan, B., Liao, C. H., Xie, J. H., Wen, P. W. and Shi, J. Y. 2015. Anti-diabetic Properties of Momordica charantia L. Polysaccharide in Alloxan-induced Diabetic Mice. International Journal of Biological Macromolecules. 81: 538-543.

Chao, C.Y., Sung, P.J., Wang, W.H. and Kuo, Y.H., 2014. Anti-inflammatory effect of Momordica charantia in sepsis mice. Molecules, 19(8), pp.12777-12788.

Bao, B., Chen, Y. G., Zhang, L., Xu, Y. L. N., Wang, X., Liu, J. and Qu, W. 2013. Momordica charantia (Bitter Melon) Reduces Obesity-associated Macrophage and Mast Cell Infiltration as Well as Inflammatory Cytokine Expression in Adipose Tissues. PLoS One. 8(12): e84075.

Yang, S. J., Choi, J. M., Park, S. E., Rhee, E. J., Lee, W. Y., Oh, K. W., Park, S. W. and Park, C. Y. 2015. Preventive Effects of Bitter Melon (Momordica charantia) against Insulin Resistance and Diabetes are Associated with the Inhibition of NF-κB and JNK Pathways in High-fat-fed OLETF Rats. The Journal of Nutritional Biochemistry. 26(3): 234-240.

Chuang, C. Y., Hsu, C., Chao, C. Y., Wein, Y. S., Kuo, Y. H. and Huang, C. J. 2006. Fractionation and Identification of 9c, 11t, 13t-conjugated Linolenic Acid as an Activator of PPARα in Bitter Gourd (Momordica charantia L.). Journal of Biomedical Science. 13(6): 763-772.

Kobori, M., Nakayama, H., Fukushima, K., Ohnishi-Kameyama, M., Ono, H., Fukushima, T., Akimoto, Y., Masumoto, S., Yukizaki, C., Hoshi, Y. and Deguchi, T. 2008. Bitter Gourd Suppresses Lipopolysaccharide-induced Inflammatory Responses. Journal of Agricultural and Food Chemistry. 56(11): 4004-4011.

Sin, S. M., Mok, S. Y., Lee, S., Kye Man Cho, E. J. C. and Kim, H. Y. 2012. Anti-Inflammatory Effect of Bitter Melon (Momordica charantia) in RAW 264.7 Cell. Cancer Prevention Research. 17(1): 56-61.

Araya, J. J., Montenegro, G., Mitscher, L. A. and Timmermann, B. N. 2010. Application of Phase-trafficking Methods to Natural Products Research. Journal of Natural Products. 73(9): 1568-1572.

Nerurkar, P. V., Orias, D., Soares, N., Kumar, M. and Nerurkar, V. R. 2019. Momordica charantia (bitter melon) Modulates Adipose Tissue Inflammasome Gene Expression and Adipose-gut Inflammatory Cross Talk in High-fat Diet (HFD)-fed Mice. The Journal of Nutritional Biochemistry. 68: 16-32.

Dubois, R. N., Abramson, S. B., Crofford, L., Gupta, R. A., Simon, L. S., Van De Putte, L. B. and Lipsky, P. E. 1998. Cyclooxygenase in Biology and Disease. The FASEB Journal. 12(12): 1063-1073.

Lee, S. G., Kim, J. H., Son, M. J., Lee, E. J., Park, W. D., Kim, J. B., Lee, S. P. and Lee, I. S. 2013. Influence of Extraction Method on Quality and Functionality of Broccoli Juice. Preventive Nutrition and Food Science. 18(2): 133.

Kim, M. J., Kim, J. I., Kang, M. J., Kwon, B., Jun, J. G., Choi, J. H. and Kim, M. J. 2015. Quality Evaluation of Fresh Tomato Juices Prepared Using High-speed Centrifugal and Low-speed Masticating Household Juicers. Food Science and Biotechnology. 24(1): 61-66.

Uckoo, R. M., Jayaprakasha, G. K., Balasubramaniam, V. M. and Patil, B. S. 2012. Grapefruit (Citrus paradisi Macfad) Phytochemicals Composition is Modulated by Household Processing Techniques. Journal of Food Science. 77(9): C921-C926.

Perez-Cacho, P. R. and Rouseff, R. 2008. Processing and Storage Effects on Orange Juice Aroma: A Review. Journal of Agricultural and Food Chemistry. 56(21): 9785-9796.

Ciou, S. Y., Hsu, C. C., Kuo, Y. H. and Chao, C. Y. 2014. Effect of Wild Bitter Gourd Treatment on Inflammatory Responses in BALB/c Mice with Sepsis. BioMedicine. 4(3).

Bravo, L. 1998. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutrition Reviews. 56(11): 317-333.

Pyo, Y. H., Jin, Y. J. and Hwang, J. Y. 2014. Comparison of the Effects of Blending and Juicing on the Phytochemicals Contents and Antioxidant Capacity of Typical Korean Kernel Fruit Juices. Preventive Nutrition and Food Science. 19(2): 108.

Downloads

Published

2020-08-10

Issue

Section

Science and Engineering

How to Cite

INHIBITION OF LIPOXYGENASES AND CYCLOOXYGENASES BY Momordica charantia. (2020). Jurnal Teknologi, 82(5). https://doi.org/10.11113/jt.v82.14555