MONTMORILLONITE SURFACE AS A CATALYST FOR THE FORMATION OF SAT METAL TETRA (P-SULPHOPHENYL) PORPHYRINS

Authors

  • Jasim Hamadi Hassen Pharmaceutical Chemistry Department, College of Pharmacy, University of Anbar, Ramadi, Iraq
  • Jack Silver Centre for Phosphor and Display Materials, Wolfson Centre for Material Processing, Brunel University, Uxbridge, London, UB8 3PH, UK

DOI:

https://doi.org/10.11113/jurnalteknologi.v82.14564

Abstract

The adsorption of the water-soluble tetra(p-sulphophenyl)porphyrin (TPPS) compound on Fe(II), Fe(III), Cu(II), Co(II), Ni(II), Zn(II), Cd(II), Sn(IV) and UO22+ metal ion-exchanged montmorillonite (MMT) facilitated the formation of the SAT metal-TPPS MMT complexes of these cations (where SAT indicates sitting atop, ie the metal is above the porphyrin plane and is bound to external ligands in this case the MMT surface). All the resulting powder samples have a brown-orange colour due to the presence of the metal-TPPS-MMT complexes of these cations. Heating the solid powder samples caused demetallation and changed the colour of the powder from brown-orange colour of the metal-TPPS-MMT complex to the green colour of the diacid porphyrin on the clay. When such samples were exposed to the open atmosphere where they could absorb water vapour, the brown-orange colour appeared again due to the remetallation. The cation remained in the vicinity of the TPPS molecule upon demetallation, which makes the metallation-demetallation process reversible. The TPPS has been found to be adsorbed only on the external surface, and can be intercalated using sodium ions in solution with the compound to open the clay lattice. The reactions were monitored using visible absorption spectra, diffuse reflectance spectra, Mössbauer spectroscopy and X-ray diffraction. 

Author Biography

  • Jasim Hamadi Hassen, Pharmaceutical Chemistry Department, College of Pharmacy, University of Anbar, Ramadi, Iraq

    Assistant Professor at Department of Pharmaceutical Chemistry

References

Lindsey, J. S. 2000. Synthesis of meso-Substituted Porphyrins. Kadish, K. M., Smith, L. M., Guilard, R. The Porphyrin Handbook. San Diego: Academic Press.

Sessler, J. L., E. Karnas and E. Sedenberg. 2012. Porphyrins and Expanded Porphyrins as Receptors. Gale, P. A., Steed, J. W. Supramolecular Chemistry: from Molecules to Nanomaterials, Vol 3. Chichester: Jhon Wiley and Sons Ltd.

Song, Z., A. O. Adeyemo, J. Baker, S. M. Traylor, and M. L. Lightfoot. 2011. Structure of Porphyrin TPPS4 and its Interaction with Metal Ions as Elucidated by 1H nmr and UV-Visible Spectra. Georgia Journal of Science. 69(2-3): 89-101.

Hajimohammadi, M. and N. Safari. 2010. Photooxygenation of Alkenes by Molecular Oxygen in the Presence of Porphyrins and Chlorin Sensitizers Under Visible Light Irradiation. Journal of Porphyrins and Phthalocyanines. 14(7): 639-645.

Murakami, Y. and K. Konishi. 2007. Remarkable Co-catalyst Effect of Gold Nanoclusters on Olefin Oxidation Catalyzed by a Manganese-Porphyrin Complex. Journal of the American Chemical Society. 129: 14401-14407.

Zhou, C-Y., P. W. H. Chan and C-M. Che. 2006. Gold (III) Porphyrin-Catalyzed Cycloisomerization of Allenones. Organic Letters. 8: 325-328.

Kadish, K. M., L. Frémond, F. Burdet, J-M. Barbe, C. P. Gros and R. Guilard. 2006. Cobalt (IV) Corroles as Catalysts for the Electroreduction of O2: Reactions of Heterobimetallic Dyads Containing a Face-to-Face Linked Fe(III) or Mn(III) Porphyrin. Journal of Inorganic Biochemistry. 100(4): 858-868.

Zolghadri, S., H. Yousefnia, A. R. Jalilian and Y. Fazaeli. 2015. Production, Quality Control, Biodistribution Assessment and Preliminary Dose Evaluation of [177Lu]-Tetra Phenyl Porphyrin Complex as a Possible Therapeutic Agent. Brazilian Journal of Pharmaceutical Sciences. 51(2): 339-348.

Kolarova, H., J. Macecek, P. Nevrelova, M. Tomecka, R. Bajgar, J. Mosinger and M. Strnad. 2005. Photodynamic Therapy with Zinc-Tetra(p-Sulfophenyl)Porphyrin Bound to Cyclodextrin Induces Single Strand Breaks of Cellular DNA in G361 Melanoma Cells. Toxicology in Vitro. 19(7): 971-974.

Banik, S., J. Bhattacharjee, S. A. Hussain and D. Bhattacharjee. 2015. Clay Induced Aggregation of a Tetra-Cationic Metalloporphyrin in Layer by Layer Self Assembled Film. Journal of Physics and Chemistry of Solids. 87: 128-135.

Sujatha, V., B. Sridhar, S. Krishnamurthy, K. S. Vinod Kumar, K. S. Kumar and P. Gautam. 2010. Use of Tetra-Ammonium Tetrakis(4-sulphonato) Phenyl Porphyrin for Pseudomonas and Bacillus Cell Imaging. International Journal of Analytical Chemistry. 1-3.

Fujimura, T., T. Shimada, S. Hamatani, S. Onodera, R. Sasai, H. Inoue, and S. Takagi. 2013. High Density Intercalation of Porphyrin into Transparent Clay Membrane without Aggregation. Langmuir. 29(16): 5060-5065.

Dias, P. M., D. L. de Faria and V. R. Constantino. 2005. Clay-Prophyrin Systems: Spectroscopic Evidence of TMPyP Protonation, Non-Planar Distortion and Meso Substituent Rotation. Clays and Clay Minerals. 53(4): 361-371.

Takagi, S., S. Konno, Y. Ishida, A. Ceklovsky, D. Masui, T. Snimada, H. Tachibana and H. Inoue. 2010. A Unique Flattening Effect of Clay on the Photochemical Properties of Metalloporphyrins. Clay Science. 14: 235-239.

Dkosiur, D. R. 1977. Porphyrin Adsorbed by Minerals. Clays and Clay Minerals. 25: 365-371.

Canesson, P., M. I. Cruz and H. Van Damme. 1979. X.P.S. Study of the Interaction of some Porphyrins and Metallo-Porphyrins with Montmorillonite. Developments in Sedimentology. 27: 217-225.

Cook, L., G Brewer and W. Wong-Ng. 2017. Structural Aspects of Porphyrins for Functional Materials Applications. Crystals. 7(7): 223-245.

Bergaya, F. and H. Van Damme. 1982. Stability of Metalloporphyrins Adsorbed on Clays: a Comparative Study. Geochimica et Cosmochimica Acta. 46(3): 349-360.

Zyoud, A., W. Jondi, W. Mansour, M. Kahn and H. S. Hilal. 2016. Modes of Tetra(4-pyridyl)porphyrinatomanganese(III) Ion Intercalation Inside Natural Clays. Chemistry Central Journal. 10: 12.

Silver, J. and B. Lukas, 1984. Mössbauer Studies on Tetra(p Sulphophenyl)-porphine Iron(III) Solutions. Inorganica chimica acta. 92: 259 263.

Miller, J. R., J. A. Taies and J. Silver. 1987. Mössbauer Spectroscopic Studies on Substituted Tetraphenyl-porphyrinato Iron(III) Complexes in Aqueous Solutions and the Formation of the µ oxo bridged Species. Inorganica chimica acta. 138: 205 214.

Silver, J., B. Lukas and J. A. Taies. 1987. Mössbauer Studies on Tetra-(p sulphophenyl)porphyrin Iron(II) Solutions, Inorganica chimica acta. 136: 99 106.

Fleischer, E. B., J. M. Palmer, T. S. Srivastava and A. Chatterjee, A. 1971. Thermodynamic and Kinetic Properties of an Iron-Porphyrin System. Journal of the American Chemical Society. 93(13): 3162-3167.

Huszank, R., G. Lendvay and O Horvath. 2007. Air-Stable, Heme-Like Water-Soluble Iron(II) Porphyrin: In Situ Preparation and Characterization. Journal of Biological Inorganic Chemistry. 12(5): 681-690.

Gouterman, M. 1961. Spectra of Porphyrins. Journal of Molecular Spectroscopy. 6: 138-163.

Imaoka, T. and K. Yamamoto. 2001. Electrochemistry of Co–Ru Hetero-Dinuclear Porphyrin Complex in a Nafion Matrix. Physical Chemistry Chemical Physics. 3: 4462-4468.

Su Min, K., R. Manivannan and Y-A. Son. 2019. Porphyrin Dye/TiO2 Imbedded PET to Improve Visible-Light Photocatalytic Activity and Organosilicon Attachment to Enrich Hydrophobicity to Attain an Efficient Self-Cleaning Material. Dyes and Pigments. 162: 8-17.

Rougee, M., T. Ebbessen, F. Ghetti and R. V. Bensasson, 1982. Kinetics and Mechanism of Porphyrinphoto-Sensitized Reduction of Methyl-Viologen. Journal of Physical Chemistry. 86(22): 4404-4412.

Major, M. M., O. Horváth, M. A. Fodora, L. Fodor, Z. Valicsek, G. Gramppb and A. Wankmüller. 2016. Photophysical and Photocatalytic Behavior of Nickel(II) 5,10,15,20- Tetrakis(1-Methyl Pyridinium-4-yl)porphyrin. Inorganic Chemistry Communications. 73: 1-3.

Shivastava, T. S., M. J. Tsutsui. 1973. Preparation and Purifcation of Tetrasodium Meso-Tetra(p-sulfophenyl)porphine. An Easy Procedure. Journal of Organic Chemistry. 38, 2103-2103.

Herrmann, O., S. H. Mehdi and A. Corsino. 1978. Heterogeneous Metal-Insertion: A Novel Reaction with Porphyrins. Canadian Journal of Chemistry. 56: 1084-1087.

Takagi, K., N. Miyake, E. Nakamura, Y. Sawaki, N. Koga and H. Iwamura. 1988. ZnTPPS-Sensitized Photodebrom-ination of 2,3-Dibromo-3-phenyl-propionic Acids. Electron Transfer Initiated Chain Debromination. Journal of Organic Chemistry. 53: 1703-1708.

Purrello, R., E. Bellacchio, S. Gurrieri, R. Lauceri, A. Raudino, L. M. Scolaro and M. A. Santoro. 1998. pH Modulation of Porphyrins Self-Assembly onto Polylysine. Journal of Physical Chemistry B.102: 8852-8857.

Wang, X., L. Zhao, R. Ma, Y. An and L. Shi. 2010. Stability Enhancement of ZnTPPS in Acidic Aqueous Solutions by Polymeric Micelles. Chemical Communications. 46: 6560–6562.

Morisaki, M., K. Enomoto, T. Ito, I. Tabata, K. Hisada and T. Hori. 2007. A Photoinduced Hydrogen Evolution System Using Polymer-Supported Tin Porphyrin. SEN-I Gakkaishi, 63: 301-306.

May, L., R. Williams, P. Hambright, C. Burnham and M. Krishnamurthy. 1981. Mössbauer Spectroscopy and Reduction Potentials of Tin(IV) Porphyrins. Journal of Inorganic and Nuclear Chemistry. 43(10): 2577-2579.

Wong, C. P., R. F. Venteicher and H. Jr. 1974. Lanthanide Porphyrin Complexes. Potential New Class of Nuclear Magnetic Resonance Dipolar Probe. Journal of the American Chemical Society. 96(22): 7149- 7150.

Fleischer, E. B., E. I. Choi, P. Hambright and A. Stone. 1964. Porphyrin Studies: Kinetic of Metalloporphyrin Formation. Inorganic Chemistry. 1: 1284.

Chang, R., 1977. Physical Chemistry with Applications to Biological Systems. New York: Macmillan Publishing Co.

Falk, J. E., 1964. Porphyrins and Metalloporphyrins. Their General, Physical and Coordination Chemistry, and Laboratory Methods. Amsterdam: Elsevier Publishing Co.

Fleischer, E. .B., and J. H. Wang. 1960. The Detection of a Type of Reaction Intermediate in the Combination of Metal Ions with Porphyrins. Journal of the American Chemical Society. 82: 3498-3502.

Inada, Y., Y. Nakano, M. Inamo, M. Nomura and S. Funahashi. 2000. Structural Characterization and Formation Mechanism of Sitting-atop (SAT) Complexes of 5,10,15,20-Tetraphenylporphyrin with Divalent Metal Ions. Structure of the Cu(II)-SAT Complex as Determined by Fluorescent Extended X-Ray Absorption Fine Structure. Inorganic Chemistry. 39: 4793-4801.

Shen, Y., and U. Ryde. 2004. The Structure of Sitting-Atop Complexes of Metallo-Porphyrins Studied by Theoretical Methods. Journal of Inorganic Biochemistry. 98(5): 878-895.

Huszánk, R., and O. Horváth. 2005. A Heme-Like, Water-Soluble Iron(II) Porphyrin: Thermal and Photoinduced Properties, Evidence for Sitting-Atop Structure. Chemical Communications. 14(2): 224–226.

Horváth, O., R. Huszánk, Z. Valicsek and G. Lendvay. 2006. Photophysics and Photochemistry of Kinetically Labile, Water-Soluble Porphyrin Complexes. Coordination Chemistry Reviews. 250: 1792-1803.

Dehghani, H., and M. R. Mansournia. 2008. Thermodynamic Studies of Sitting-Atop (SAT) Complexation of Uranyl and Free Base Meso –Tetraarylporphyrins, Journal of Coordination Chemistry. 61:2743-2749

Dehghani, H., and M. Babaahmadi. 2008. Synthesis and Characterization of Intermediate Sitting-Atop (I-SAT) Complexes of Free Base Meso-Tetraarylporphyrins and Tin(IV) Chloride. Polyhedron. 27: 2739-2742.

De Luca, G., A. Romeo, L. M. Scolaro, G. Ricciardi and A. Rosa. 2009. Sitting-Atop Metallo-Porphyrin Complexes: Experimental and Theoretical Investigations on Such Elusive Species. Inorganic Chemistry. 48(17): 8493-8507.

Downloads

Published

2020-10-21

Issue

Section

Science and Engineering

How to Cite

MONTMORILLONITE SURFACE AS A CATALYST FOR THE FORMATION OF SAT METAL TETRA (P-SULPHOPHENYL) PORPHYRINS . (2020). Jurnal Teknologi, 82(6), 1-9. https://doi.org/10.11113/jurnalteknologi.v82.14564