INFLUENCE OF CARBONISATION TEMPERATURE ON THE SURFACE PORE CHARACTERISTICS OF ACID-TREATED OIL PALM EMPTY FRUIT BUNCH ACTIVATED CARBON
DOI:
https://doi.org/10.11113/jt.v82.14598Keywords:
Air pollution control, Oil palm empty fruit bunch, Carbonisation, Adsorption, Nitric oxide, Pore characterisationAbstract
Carbonisation process affects the surface physical and chemical properties of an activated carbon. Therefore, this work aims to investigate the influence of carbonisation temperature from 400 to 550°C during activation with 85% phosphoric acid (H3PO4) on the surface pore characteristics of activated carbon produced from oil palm empty fruit bunch (EFB) for nitric oxide (NO) removal from gas streams. Pore and morphological characterisation showed that EFB carbonised at 400°C (EFBC-400) is microporous and has a uniform pore structure with 98% micropore volume. Increasing carbonisation temperature resulted in pore enlargement from 2.8 to 4.7 nm and increment in pore heterogeneity and BET surface area from 215 to 759 m2/g. However, the NO breakthrough experiment indicated that EFBC-400 is more favourable for low-temperature NO removal, due to the importance of microporosity in adsorption of NO. Further study will look at the kinetics of NO removal and the adsorbent regeneration.
References
Wang, C., P. Guo, G. Han, X. Feng, P. Zhang, and X. Tian. 2010. Effect of Simulated Acid Rain on the Litter Decomposition of Quercus Acutissima and Pinus Massoniana in Forest Soil Microcosms and the Relationship with Soil Enzyme Activities. Science of the Total Environment. 408(13): 2706-2713.
DOI: 10.1016/j.scitotenv.2010.03.023.
Walid Bizreh, Y., L. Al-Hamoud, and M. AL-Joubeh. 2014. A Study on the Catalytic Activity of New Catalysts for Removal of NOx, CH and CO Emitted from Car Exhaust. Journal of the Association of Arab Universities for Basic and Applied Sciences. 16: 55-63.
DOI: 10.1016/j.jaubas.2013.06.001.
Sych, N. V., S. I. Trofymenko, O. I. Poddubnaya, M. M. Tsyba, V. I. Sapsay, D. O. Klymchuk, and A. M. Puziy. 2012. Porous Structure and Surface Chemistry of Phosphoric Acid Activated Carbon from Corncob. Applied Surface Science. 261: 75-82.
DOI: 10.1016/j.apsusc.2012.07.084.
Guo, S., J. Peng, W. Li, K. Yang, L. Zhang, S. Zhang, and H. Xia. 2009. Effects of CO2 Activation on Porous Structures of Coconut Shell-based Activated Carbons. Applied Surface Science. 255(20): 8443-8449.
DOI: 10.1016/j.apsusc.2009.05.150.
Rashidi, N. A., S. Yusup, and L. H. Loong. 2013. Kinetic Studies on Carbon Dioxide Capture using Activated Carbon. Chemical Engineering Transactions. 35: 361-366.
DOI: 10.3303/CET1335060.
Guo, J., and A. C. Lua. 2003. Textural and Chemical Properties of Adsorbent Prepared from Palm Shell by Phosphoric Acid Activation. Materials Chemistry and Physics. 80: 114-119.
DOI: 10.1016/S0254-0584(02)00383-8.
Do, D. D., and A. Ahmadpour. 1995. The Preparation of Active Carbons from Coal by Chemical and Physical Activation. Carbon. 34(4): 471-479.
DOI:10.1016/0008-6223(95)00204-9.
Li, W., K. Yang, J. Peng, L. Zhang, S. Guo, and H. Xia. 2008. Effects of Carbonization Temperatures on Characteristics of Porosity in Coconut Shell Chars and Activated Carbons Derived from Carbonized Coconut Shell Chars. Industrial Crops and Products. 28(2): 190-198.
DOI: 10.1016/j.indcrop.2008.02.012.
Gratuito, M. K. B., T. Panyathanmaporn, R. A. Chumnanklang, N. Sirinuntawittaya, and A. Dutta. 2008. Production of Activated Carbon from Coconut Shell: Optimization using Response Surface Methodology. Bioresource Technology. 99(11): 4887-4895.
DOI: 10.1016/j.biortech.2007.09.042.
Mane, V. S. and P. V. V Babu. 2011. Studies on the Adsorption of Brilliant Green Dye from Aqueous Solution onto Low-cost NaOH Treated Saw Dust. Desalination. 273(2-3): 321-329.
DOI: 10.1016/j.desal.2011.01.049.
Lau, L. C., K. T. Lee, and A. R. Mohamed. 2010. Rice Husk Ash Sorbent Doped with Copper for Simultaneous Removal of SO2 and NO: Optimization Study. Journal of Hazardous Materials. 183(1-3): 738-45.
DOI: 10.1016/j.jhazmat.2010.07.088.
Njoku, V. O., K. Y. Foo, M. Asif, and B. H. Hameed. 2014. Preparation of Activated Carbons from Rambutan (Nephelium lappaceum) Peel by Microwave-induced KOH Activation for Acid Yellow 17 Dye Adsorption, Chemical Engineering Journal. 250: 198-204.
DOI:10.1016/j.cej.2014.03.115.
Prauchner, M. J., and F. RodrÃguez-Reinoso. 2012. Chemical Versus Physical Activation of Coconut Shell: A Comparative Study. Microporous and Mesoporous Materials. 152(2012): 163-171.
DOI:10.1016/j.micromeso.2011.11.040.
Qin, C., Y. Chen, and J. Gao. 2014. Manufacture and Characterization of Activated Carbon from Marigold Straw (Tagetes Erecta L.) by H3PO4 Chemical Activation. Materials Letters. 135: 123-126.
DOI: 10.1016/j.matlet.2014.07.151.
Wang, X., D. Li, W. Li, J. Peng, H. Xia, L. Zhang, S. Guo, and G. Chen. 2013. Optimization of Mesoporous Activated Carbon from Coconut Shells by Chemical Activation with Phosphoric Acid. Bioresources Technology. 8(4): 6184-6195.
DOI: 10.15376/biores.8.4.6184-6195.
Xue, Y., Y. Guo, Z. Zhang, Y. Guo, Y. Wang, and G. Lu. 2008. The Role of Surface Properties of Activated Carbon in the Catalytic Reduction of NO by Carbon. Applied Surface Science. 255(5): 2591-2595.
DOI: 10.1016/j.apsusc.2008.07.167.
Xue, Y., G. Lu, Y. Guo, Y. Guo, Y. Wang, and Z. Zhang. 2008. Effect of Pretreatment Method of Activated Carbon on the Catalytic Reduction of NO by Carbon over CuO. Applied Catalysis B: Environmental. 79(3): 262-269.
DOI: 10.1016/j.apcatb.2007.10.027.
Yin, C., M. Aroua, and W. Daud. 2007. Review of Modifications of Activated Carbon for Enhancing Contaminant Uptakes from Aqueous Solutions. Separation and Purification Technology. 52(3): 403-415.
DOI: 10.1016/j.seppur.2006.06.009.
Rafatullah, M., O. Sulaiman, R. Hashim, and A. Ahmad. 2010. Adsorption of Methylene Blue on Low-cost Adsorbents: A Review. Journal of Hazardous Materials. 177(1-3): 70-80.
DOI: 10.1016/j.jhazmat.2009.12.047.
Ghouma, I., M. Jeguirim, L. Limousy, N. Bader, A. Ouederni, and S. Bennici. 2018. Factors influencing NO2 Adsorption/reduction on Microporous Activated Carbon: Porosity vs. Surface Chemistry. Materials. 11(4): 622-640.
DOI: 10.3390/ma11040622.
Belhachemi, M., M. Jeguirim, L. Limousy, and F. Addoun. 2014. Comparison of NO2 Removal Using Date Pits Activated Carbon and Modified Commercialized Activated Carbon via Different Preparation Methods: Effect of Porosity and Surface Chemistry. Chemical Engineering Journal. 253(2): 121-129.
DOI: 10.1016/j.cej.2014.05.004.
Nowicki, P., R. Pietrzak, and H. Wachowska. 2010. Sorption Properties of Active Carbons Obtained from Walnut Shells by Chemical and Physical Activation. Catalysis Today. 150(1-2): 107-114.
DOI: 10.1016/j.cattod.2009.11.009.
Cha, J. S., J. C. Choi, J. H. Ko, Y. K. Park, S. H. Park, K. E. Jeong, S. S. Kim, and J. K. Jeon. 2010. The Low-temperature SCR of NO over Rice Straw and Sewage Sludge Derived Char. Chemical Engineering Journal. 156(2): 321-327.
DOI: 10.1016/j.cej.2009.10.027.
Rosas, J. M., J. Bedia, J. Rodriguez-Mirasol, and T. Cordero. 2010. On the Preparation and Characterization of Chars and Activated Carbons from Orange Skin. Fuel Processing Technology. 91(10): 1345-1354.
DOI: 10.1016/j.fuproc.2010.05.006.
Sumathi, S., S. Bhatia, K. T. Lee, and A. R. Mohamed. 2009. Performance of an Activated Carbon Made from Waste Palm Shell in Simultaneous Adsorption of SOx and NOx of Flue Gas at Low Temperature. Science in China Series E: Technological Sciences. 52(1): 198-203
DOI: 10.1007/s11431-009-0031-6.
Pietrzak, R., P. Nowicki, J. Kaźmierczak, I. Kuszyńska, J. Goscianska, and J. Przepiórski. 2014. Comparison of the Effects of Different Chemical Activation Methods on Properties of Carbonaceous Adsorbents obtained from Cherry Stones. Chemical Engineering Research and Design. 92(6): 1187-1191.
DOI: 10.1016/j.cherd.2013.10.005.
Ng, W. P. Q., H. L. Lam, F. Y. Ng, M. Kamal, and J. H. E. Lim. 2012. Waste-to-wealth: Green Potential from Palm Biomass in Malaysia. Journal of Cleaner Production. 34: 57-65.
DOI: 10.1016/j.jclepro.2012.04.004.
Ahmad, N., S. H. Yong, N. Ibrahim, U. F. M. Ali, F. M. Ridwan, and R. Ahmad. 2018. Optimisation of Copper Oxide Impregnation on Carbonised Oil Palm Empty Fruit Bunch for Nitric Oxide Removal using Response Surface Methodology, E3S Web of Conferences. 02029.
DOI: 10.1051/e3sconf/20183402029.
Guo, Y., and D. A. Rockstraw. 2007. Activated Carbons Prepared from Rice Hull by One-step Phosphoric Acid Activation. Microporous and Mesoporous Materials. 100(1-3): 12-19.
DOI: 10.1016/j.micromeso.2006.10.006.
Ahmad, M. A., W. M. A. Wan Daud, and M. K. Aroua. 2008. Adsorption Kinetics of Various Gases in Carbon Molecular Sieves (CMS) Produced from Palm Shell, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 312 (2-3): 131-135.
DOI: 10.1016/j.colsurfa.2007.06.040.
Sudaryanto, Y., S. B. Hartono, W. Irawaty, H. Hindarso, and S. Ismadji. 2006. High Surface Area Activated Carbon Prepared from Cassava Peel by Chemical Activation. Bioresource Technology. 97(5): 734-739.
DOI: 10.1016/j.biortech.2005.04.029.
Bazan-Wozniak, A., P. Nowicki, and R. Pietrzak. 2017. The Influence of Activation Procedure on the Physicochemical and Sorption Properties of Activated Carbons Prepared from Pistachio Nutshells for Removal of NO2/H2S gases and dyes. Journal of Cleaner Production. 152: 211-222.
DOI: 10.1016/j.jclepro.2017.03.114.
Claudino, A., J. L. Soares, R. F. P. M. Moreira, and H. J. José. 2004. Adsorption Equilibrium and Breakthrough Analysis for NO Adsorption on Activated Carbons at Low Temperatures. Carbon. 42(8-9): 1483-1490.
DOI: 10.1016/j.carbon.2004.01.048.
Kaneko, K., N, Fukuzaki, K, Kakei, T, Suzuki, and Sumio Ozeki. 1989. Enhancement of NO Dimerization by Micropore Fields of Activated Carbon Fibers, Langmuir. 5: 960-965.
DOI: 10.1021/la00088a014.
Alcañiz-Monge, J., A. Bueno-López, M.Ã. Lillo-Rodenas, and M. J., Illán-Gómez. 2008. No Adsorption on Activated Carbon Fibers from Iron-containing Pitch. Microporous and Mesoporous Materials. 108 (1-3): 294-302.
DOI: 10.1016/j.micromeso.2007.04.011.
Linares-solano, A. 1989. Textural Characterization of Porous Carbons. Carbon and Coal Gasification. Martinus Nijhoff Publishers, Dordrecht. 137-178.
Al-Rahbi, A. S. S., M. A. Nahil, C. Wu, and P. T. Williams. 2016. Waste-derived Activated Carbons for Control of Nitrogen Oxides. Proceedings of the Institution of Civil Engineers-Waste and Resource Management. 169(1): 30-41.
DOI:10.1680/jwarm.14.00021.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.