PREPARATION OF SPRAY DRIED COAMORPHOUS SOLIDS TO IMPROVE THE SOLUBILITY AND DISSOLUTION RATE OF ATORVASTATIN CALCIUM

Authors

  • Yudi Wicaksono Drug Modification Research Group, Faculty of Pharmacy, University of Jember, Jember, 68121, Indonesia http://orcid.org/0000-0002-8389-8818
  • Viddy Agustian Rosidi Drug Modification Research Group, Faculty of Pharmacy, University of Jember, Jember, 68121, Indonesia https://orcid.org/0000-0002-0866-3840
  • Sri Yessika Saragih Drug Modification Research Group, Faculty of Pharmacy, University of Jember, Jember, 68121, Indonesia
  • Lyta Septi Fauziah Drug Modification Research Group, Faculty of Pharmacy, University of Jember, Jember, 68121, Indonesia
  • Dwi Setyawan Faculty of Pharmacy, Airlangga University, Surabaya, 60286, Indonesia https://orcid.org/0000-0001-8009-6054

DOI:

https://doi.org/10.11113/jurnalteknologi.v83.14706

Keywords:

Coamorphous solid, atorvastatin calcium, spray drying, solubility, dissolution rate

Abstract

Atorvastatin calcium (AC) is a statin drug used to lower cholesterol. Its crystalline form is usually found in the market with low solubility properties. The amorphization of crystalline AC is a technique used to increase its solubility however; the amorphous form has less thermodynamic stability. Therefore, to increase the solubility properties of its crystalline form, an AC coamorphous solid was prepared. This coamorphous solid was prepared using spray drying techniques, and coformers such as isonicotinamide (INA) and maleic acid (MA). Furthermore, characterization was carried out using powder X-ray diffraction, differential scanning calorimetry, fourier transform infrared spectroscopy, and scanning electron microscopy, while the solubility properties test was conducted using the shake-flask and paddle method. The results showed that the spray-dried solids were coamorphous with single-phase homogeneous systems. Furthermore, the coamorphous solids, AC-INA and AC-MA were found to have a higher Tg than the melting points of other components, and formed intermolecular interactions between them. The higher Tg and presence of intermolecular interactions indicate that coamorphous solids are more stable than the amorphous form. Therefore, the results of the solubility and dissolution test showed that the coamorphous solid of AC-INA and AC-MA have better solubility properties compared to the AC crystalline form.

References

Williams, R. O., A. B. Watts, and D. A. Miller. 2016. Formulating Poorly Water Soluble Drugs. Cham: Springer Nature.

Kawabata Y, Wada K, Nakatani M, Yamada S, and Onoue S. 2011. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. International Journal of Pharmaceutics. 420: 1-10.

Athiyah, U., P. A. Kusuma, Tutik, M. L. A. D. Lestari, D. Isadiartuti, D. P. Paramita, and D. Setyawan. 2019. Crystal engineering of quercetin by liquid assisted grinding method. Jurnal Teknologi. 81(1): 39-45.

DOI : https://doi.org/10.11113/jt.v81.12639

Yassine, H. 2015. Lipid Management. Cham: Springer Science.

Kim, J. S., M. S. Kim, H. J. Park, S. J. Ji, S. Lee, and S. J. Hwang. 2008. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process. International Journal of Pharmaceutics. 359: 211–219.

DOI : https://doi:10.1016/j.ijpharm.2008.04.006

Kim, M. S., S. J. Jin, J. S. Kim, H. J. Park, H. S. Song, R. H.H. Neubert, and S. J. Hwang. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. International Journal of Pharmaceutics. 69: 454–465.

DOI : https://doi:10.1016/j.ejpb.2008.01.007

Choudhary, A., A. C. Rana, G. Aggarwal, V. Kumar, and F. Zakir. 2012. Development and characterization of an atorvastatin solid dispersion formulation using skimmed milk for improved oral bioavailability. Acta Pharmaceutica Sinica B. 2(4):421–428.

DOI : http://dx.doi.org/10.1016/j.apsb.2012.05.002

Dhokchawle B. V., S. J. Tauro, and A. B. Bhandari. 2013. Amorphous pharmaceutical solids: a review. Indian Drugs. 50(07): 5-13.

[9] Laitinen, R., K. Löbmann, C. J. Strachan, H. Grohganz, and T. Rades. 2013. Emerging trends in the stabilization of amorphous drugs. International Journal of Pharmaceutics. 453: 65-79.

DOI : http://dx.doi.org/10.1016/j.ijpharm.2012.04.066

Vo, C. L. N., C. Park, and B. J. Lee. 2013. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics. 85: 799–813.

DOI : http://dx.doi.org/10.1016/j.ejpb.2013.09.007

Chavan, R. B., R. Thipparaboina, D. Kumar, and N. R. Shastri. 2016. Co amorphous systems: A product development perspective. International Journal of Pharmaceutics. 515: 403–415.

DOI : http://dx.doi.org/10.1016/j.ijpharm.2016.10.043

Ueda, H., N. Muranushi, S. Sakuma, Y. Ida, T. Endoh, K. Kadota, and Y. Tozuka. 2016. A Strategy for Co-former Selection to Design Stable Co-amorphous Formations Based on Physicochemical Properties of Non-steroidal Inflammatory Drugs. Pharmaceutical Research. 33: 1018-1029.

DOI : http://dx.doi.org/10.1007/s11095-015-1848-2

Shi, Q., S. M. Moinuddin, T. Cai. 2019. Advances in coamorphous drug delivery systems. Acta Pharmaceutica Sinica B. 9(1):19–35.

DOI : https://dx.doi.org/10.1016/j.apsb.2018.08.002

Wang, J., R. Chang, Y. Zhao, J. Zhang, T. Zhang, Q. Fu, C. Chang, and A. Zeng. 2017. Coamorphous Loratadine-Citric Acid System with Enhanced Physical Stability and Bioavailability. AAPS PharmSciTech. 18(7): 2541-1550.

DOI : http://dx.doi.org/10.1208/s12249-017-0734-0

Karagianni, A., K. Kachrimanis, and I. Nikolakakis. 2018. Co-Amorphous Solid Dispersions for Solubility and Absorption Improvement of Drugs: Composition, Preparation, Characterization and Formulations for Oral Delivery. Pharmaceutics. 10(3): 98.

DOI: http://dx.doi.org/10.3390/pharmaceutics10030098

Shayanfar, A., H. Ghavimi, H. Hamishehkar, and A. Jouyban. 2013. Coamorphous Atorvastatin Calcium to Improve its Physicochemical and Pharmacokinetic Properties. Journal of Pharmmacy and Pharmaceutical Sciences. 16(4): 577-587.

Nair, A., R. Varma, K. Gourishetti, K. Bhat, and S. Dengale. 2019. Influence of Preparation Methods on Physicochemical and Pharmacokinetic Properties of Co-amorphous Formulations: The Case of Co-amorphous Atorvastatin: Naringin. Journal of Pharmaceutical Innovation.

DOI : https://dx.doi.org/10.1007/s12247-019-09381-9

Wairkar, S., and R. Gaud. 2019. Development and Characterization of Microstructured, Spray-Dried Co-Amorphous Mixture of Antidiabetic Agents Stabilized by Silicate. AAPS PharmSciTech. 20: 141.

DOI : https://dx.doi.org/10.1208/s12249-019-1352-9

Kasten, G., Ã. Duarte, M. Paisana, K. Löbmann, T. Rades, and H. Grohganz. 2019. Process Optimization and Upscaling of Spray-Dried Drug-Amino acid Co-Amorphous Formulations. Pharmaceutics. 11(1): 24;

DOI : https://dx.doi.org/10.3390/pharmaceutics11010024

Bello, A. A., A. Ahmad, A. Ripin, and O. Oladokun. 2016. Numerical estimation of moisture content in spray dried juice Powder. Jurnal Teknologi. 78(8–3): 65–70.

Ojarinta, R., L. Lerminiaux, and R. Laitinen. Spray drying of poorly soluble drugs from aqueous arginine solution. International Journal of Pharmaceutics. 532(1): 289-298.

DOI : https://dx.doi.org/10.1016/j.ijpharm.2017.09.015

Lu,W(1), T. Rades, J. Rantanen, and M. Yang. 2019. Inhalable co-amorphous budesonide-arginine dry powders prepared by spray drying. International Journal of Pharmaceutics. 565: 1-8.

DOI : https://dx.doi.org/10.1016/j.ijpharm.2019.04.036

Bhalla, Y., K. Chadha, R. Chadha, and M. Karan. 2019. Daidzein cocrystals: An opportunity to improve its biopharmaceutical parameters. Heliyon. 5(11): e02669.

DOI : https://dx.doi.org/10.1016/j.heliyon.2019.e02669

Han, Y., Y. Pan., Lv, J., Guo, W., and Wang, J. 2016. Powder grinding preparation of co-amorphous β-azelnidipine and maleic acid combination: Molecular interactions and physicochemical properties. Powder Technology. 291: 110-120.

DOI : https://dx.doi.org/10.1016/j.powtec.2015.11.068

Wicaksono, Y., D. Setyawan, Siswandono, and T. A. Siswoyo. 2019. Preparation and Characterization of a Novel Cocrystal of Atorvastatin Calcium with Succinic Acid Coformer. Indonesian Journal of Chemistry. 19(3): 660-667.

DOI : https://dx.doi.org/10.22146/ijc.35801

Ainurofiq, A., R. Mauludin, D. Mudhakir, and S. N. Soewandhi. 2018. A Novel Desloratadine-Benzoic Acid Co-Amorphous Solid: Preparation, Characterization, and Stability Evaluation. Pharmaceutics. 10 (3): 85.

DOI : https://dx.doi.org/10.3390/pharmaceutics10030085

Angeles, J. C., M. Videa, and L. M. Martínez. 2019. Highly Soluble Glimepiride and Irbesartan Co-amorphous Formulation with Potential Application in Combination Therapy. AAPS PharmSciTech. 20(4): 144.

DOI : https://dx.doi.org/10.1208/s12249-019-1359-2

Newman, A., S. M. R. Edens, and G. Zografi. 2018. Coamorphous Active Pharmaceutical IngredienteSmall Molecule Mixtures: Considerations in the Choice of Coformers for Enhancing Dissolution and Oral Bioavailability. Journal of Pharmaceutical Sciences. 107(1): 5-17.

DOI : https://dx.doi.org/10.1016/j.xphs.2017.09.024

Jiménez, C. M., J. C. Angeles, M. Videa, and L. M. Martínez. 2018. Co-Amorphous Simvastatin-Nifedipine with Enhanced Solubility for Possible Use in Combination Therapy of Hypertension and Hypercholesterolemia. Molecules. 23(9): 2161.

DOI : https://dx.doi.org/10.3390/molecules23092161

D’Angelo, A., B. Edgar, A. P. Hurt, and M. D. Antonijevic. 2018. Physico-chemical characterisation of three-component co-amorphous systems generated by a melt-quench method. Journal of Thermal Analysis and Calorimetry. 134: 381–390.

DOI : https://dx.doi.org/10.1007/s10973-018-7291-y

Wairkar, S., and R. Gaud. 2016. Co-Amorphous Combination of Nateglinide-Metformin Hydrochloride for Dissolution Enhancement. AAPS PharmSciTech. 17(3): 673-681.

DOI : https://dx.doi.org/10.1208/s12249-015-0371-4

Zhang, M., X. Xiong, Z. Suo, Q. Hou, N. Gan, P. Tang, X. Ding, and H. Li. 2019. Co-amorphous palbociclib–organic acid systems with increased dissolution rate, enhanced physical stability and equivalent biosafety. RSC Advances. 9(7): 3946–3955.

DOI : https://dx.doi.org/10.1039/c8ra09710k

Mulye, S. P., S. A. Jamadar, P. S. Karekar, Y. V. Pore, and S. C. Dhawale. 2012. Improvement in physicochemical properties of ezetimibe using a crystal engineering technique. Powder Technology. 222: 131-138.

DOI : https://dx.doi.org/10.1016/j.powtec.2012.02.020

Sterren, V. B., V. Aiassa, C. Garnero, Y. G. Linck, A. K. Chattah, G. A. Monti, M. R. Longhi, and A. Zoppi. 2017. Preparation of Chloramphenicol/Amino Acid Combinations Exhibiting Enhanced Dissolution Rates and Reduced Drug-Induced Oxidative Stress. AAPS PharmSciTech. 18(8): 2910-2918.

DOI : https://dx.doi.org/10.1208/s12249-017-0775-4

Downloads

Published

2021-02-02

Issue

Section

Science and Engineering