DEVELOPMENT AND PERFORMANCE OF A SOLAR DRYER HYBRID PHOTOVOLTAIC THERMAL SYSTEM

PEMBANGUNAN DAN PRESTASI SISTEM PENGERING SURIA HIBRID FOTOVOLTAN TERMA

Authors

  • Mohd Syahriman Mohd Azmi Jabatan Fizik, Fakulti Sains dan Matematik, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia https://orcid.org/0000-0002-6390-9903
  • Zafri Azran Abdul Majid Kulliyyah of Allied Health Sciences, Universiti Islam Antarabangsa Malaysia, 25200, Kuantan, Pahang, Malaysia
  • Mohd Hafidz Ruslan Institut Penyelidikan Tenaga Suria, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.14845

Keywords:

Solar dryer system, hybrid photovoltaic thermal, configuration-Z thermal absorber plate, multi-direction solar collector, system performance

Abstract

A solar dryer hybrid photovoltaic thermal (PV/T) system has been designed, built and its performance has been studied. This research aims to develop a stand-alone solar dyer system, portable and less maintenance. This system consists of three main parts; PV/T system with configuration-Z thermal absorber plate, multi-direction solar collector with cross absorber plate and drying chamber. Solar thermal collector which was designed in the system is called a multi-direction solar collector because the solar radiation does not get the heat through the upper part but also on the lower sides. This situation will then increase the amount of heat that will absorb by the absorber plate. The cross absorber plate will be used in a multi-direction solar collector because it can be assembled row by row. Six sets of cross absorber plates are used in this system. PV/T airflow uses configuration-Z absorber plate which is placed under the photovoltaic (PV) module. The amount of heat produced from the PV/T configuration-Z is used as the pre-heat before the hot air flows to the multi-direction solar collector. While electric energy from PV is used to operate the ventilation fan. The solar dryer hybrid PV/T system tested its effectiveness in the field under the daily solar radiation. The total efficiency generated from PV/T configuration-Z system is in the range of 35% to 52%. For the multi-direction solar collector system, the output range was generated between 32.0 °C to 46.6 °C, whereas the thermal efficiency is in the range of 50% to 70%.  

References

Sandali, M., Boubekri, A. and Mennouche, D. 2019. Improvement of the Thermal Performance of Solar Drying Systems Using Different Techniques: A Review. Journal of Solar Energy Engineering. 141(5): 050802.

DOI: https://doi.org/10.1115/1.4043613.

Kamfa, I., Fluch, J., Bartali, R. and Baker, D. 2020. Solar-thermal Driven Drying Technologies for Large-scale Industrial Applications: State of the Art, Gaps, and Opportunities. International Journal of Energy Research. 44: 9864-9888.

DOI: https://doi.org/10.1002/er.5622.

Mohd Syahriman Mohd Azmi, Mohd Yusof Hj. Othman, Mohd Hafidz Ruzlan, Kamaruzzaman Sopian, Zafri Azran Abdul Majid and Ahmad Fudholi. 2015. Research and Development Work on Solar Assisted Drying Systems. Research Journal of Applied Sciences, Engineering and Technology. 11(7): 701-714.

DOI: http://dx.doi.org/10.19026/rjaset.11.2033.

Evangelisti, L., Vollaro, R.D.L. and Asdrubali, F. 2019. Latest Advances on Solar Thermal Collectors: A Comprehensive Review. Renewable and Sustainable Energy Reviews. 114: 109318.

DOI: https://doi.org/10.1016/j.rser.2019.109318.

Zulkifle, I., Alwaeli, A. H., Ruslan, M.v H., Ibarahim, Z., Othman, M. Y. H. and Sopian, K. 2018. Numerical Investigation of V-groove Air-collector Performance with Changing Cover in Bangi, Malaysia. Case Studies in Thermal Engineering. 12: 587-599.

DOI: https://doi.org/10.1016/j.csite.2018.07.012.

Nurul Aiman Mhd Safri, Zalita Zainuddin, Mohd Syahriman Mohd Azmi, Ahmad Fudholi, Idris Zulkifle and Mohd Hafidz Ruslan. 2020. Temperature Performance of a Portable Solar Greenhouse Dryer with Various Collector Design. Sains Malaysiana. 49(10): 2539-2545.

DOI: http://dx.doi.org/10.17576/jsm-2020-4910-19.

Kumar, D., Bhoyar, S. and Karankoti, S. V. 2017. Performance Analysis for the High Mass Flow Rate Double-Pass Solar Air Collector with and without Porous Media. International Journal of Scientific & Engineering Research. 8(4): 69-85.

Daghigh, R. and Shafieian, A. 2016. An Experimental Study of a Heat Pipe Evacuated Tube Solar Dryer with Heat Recovery System. Renewable Energy. 96: 872-880.

Poonia, S., Singh, A. K. and Jain, D. 2018. Design Development and Performance Evaluation of Photovoltaic/thermal (PV/T) Hybrid Solar Dryer for Drying of ber (Zizyphus mauritiana) Fruit. Cogent Engineering. 5(1): 1-18.

DOI: https://doi:10.1080/23311916.2018.1507084.

Kong, D., Wang, Y., Li, M., Keovisar, V., Huang, M. and Yu, Q. 2020. Experimental Study of Solar Photovoltaic/thermal (PV/T) Air Collector Drying Performance. Solar Energy. 208: 978-989.

DOI: https://doi:10.1016/j.solener.2020.08.067.

Zafri, M. A. A., Othman, M. Y. H., Ruslan, M. H. and Sopian, K. 2007. Development and Application of Multifuntional Solar Thermal Collector on Heat Pump Dryer System. Mathematical Sciences in Engineering Conference Proceedings. 48-53.

Idris Zulkifle, Mohd Hafidz Hj Ruslan, Mohd. Yusof Hj Othman, Zahari Ibarahim and Kamaruzzaman Sopian. 2018. Pengeringan Asam Gelugur (Garcinia Atroviridis) Menggunakan Sistem Pengering Suria. Jurnal Teknologi (Sciences & Engineering). 80(5): 129-133.

DOI: https://doi.org/10.11113/jt.v80.11822.

Udomkun, P., Romuli, S., Schock, S., Mahayothee, B., Sartas, M., Wossen, T., Njukwe, E., Vanlauwe, B. and Müller, J. 2020. Review of Solar Dryers for Agricultural Products in Asia and Africa: An Innovation Landscape Approach. Journal of Environmental Management. 268: 110730.

DOI: https://doi:10.1016/j.jenvman.2020.110730.

Kumar, P. and Singh, D. 2020. Advanced Technologies and Performance Investigations of Solar Dryers: A Review. Renewable Energy Focus. 35: 148-158.

DOI: https://doi:10.1016/j.ref.2020.10.003.

Fisk, M. J. and Anderson, H. C. W. 1982. Introduction to Solar Technology. New York: Addison Wesley Publishing.

Chow, T. T. 2003. Performance Analysis of Photovoltaic Thermal Collector by Explicit Dynamic Model. Solar Energy. 75: 143-152.

DOI: https://doi.org/10.1016/j.solener.2003.07.001.

Young, H. D. and Freedman, R. A. 2019. University Physics with Modern Physics. 15th edition. Harlow, United Kingdom: Pearson Education Limited.

Vliet, G. C., Howell, J. R. and Bannerot, R. B. 1982. Solar-thermal Energy System: Analysis and Design. United States of America: McGraw-Hill Inc.

Charalambus, P. G., Maidment, G. G., Kalogirou, S. A. and Yiakoumetti, K. 2007. Photovoltaic Thermal (PV/T) Collectors: A Review. Applied Thermal Engineering. 27: 275-286.

DOI: https://doi.org/10.1016/j.applthermaleng.2006.06.007.

Moss, K. J. 1998. Heat and Mass Transfer in Building Services Design. London: Alden Press Oxford.

Sopian, K., Yigit, K. S., Liu, H. T., Kakac, S. and Veziroglu, T. N. 1996. Performance Analysis of Photovoltaic Thermal Air Heaters. Energy Conversion and Management. 37(11): 1657-1670.

DOI: https://doi.org/10.1016/0196-8904(96)00010-6.

Swapnil, D., Jatin, N. S. and Bharath, S. 2013. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review. Energy Procedia. 33: 311-321.

DOI: https://doi.org/10.1016/j.egypro.2013.05.072.

Hsieh, J. S. 1986. Solar Energy Engineering. New Jersey: Prentice Hall.

Tonui, J. K. and Tripanagnostopoulos, Y. 2007. Improved PV/T Solar Collectors with Heat Extraction by Forces or Natural Air Convection. Renewable Energy. 32: 623-637.

DOI: http://dx.doi.org/10.1016/j.renene.2006.03.006.

Mazer, J. A. 1997. Solar Cells: An Introduction to Crystalline Photovoltaic Technology. Boston: Kluwer Academic Publishers.

Tiwari, A. and Sodha, M. S. 2006. Performance Evaluation of Solar PV/T System: An Experimental Validation. Solar Energy. 80: 751-759.

DOI: http://dx.doi.org/10.1016/j.solener.2005.07.006.

Zafri Azran Abdul Majid. 2011. Kajian Prestasi Sistem Pengering Pam Haba Terbantu Suria dengan Pengumpul Suria Multifungsi. Tesis Ijazah Doktor Falsafah, Universiti Kebangsaan Malaysia.

Fudholi, A., Sopian, K., Ruslan, M. H, AlGhoul, M. A. and Sulaiman, M. Y. 2010. Review of Solar Dryers for Agricultural and Marine Products. Renewable and Sustainable Energy Review. 14: 1-30.

DOI: https://doi.org/10.1016/j.rser.2009.07.032.

Nurul Aiman Mhd Safri, Zalita Zainuddin, Mohd Syahriman Mohd Azmi, Idris Zulkifle, Ahmad Fudholi, Mohd Hafidz Ruslan and Kamaruzzaman Sopian. 2021. Current Status of Solar-assisted Greenhouse Drying Systems for Drying Industry (Food Materials and Agricultural Crops). Trends in Food Science & Technology. 114: 633-657.

DOI: https://doi.org/10.1016/j.tifs.2021.05.035.

Downloads

Published

2022-12-02

How to Cite

Mohd Azmi, M. S., Abdul Majid, Z. A. ., & Ruslan, M. H. . (2022). DEVELOPMENT AND PERFORMANCE OF A SOLAR DRYER HYBRID PHOTOVOLTAIC THERMAL SYSTEM: PEMBANGUNAN DAN PRESTASI SISTEM PENGERING SURIA HIBRID FOTOVOLTAN TERMA. Jurnal Teknologi, 85(1), 53-61. https://doi.org/10.11113/jurnalteknologi.v85.14845

Issue

Section

Science and Engineering