BACTERIAL DESULFURIZATION OF DIBENZOTHIOPHENE BY PSEUDOMONAS SP. STRAIN KWN5 IMMOBILIZED IN ALGINATE BEADS

Authors

  • Ida Bagus Wayan Gunam Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Bukit Jimbaran, Badung 80361, Bali, Indonesia http://orcid.org/0000-0002-2822-6656
  • Ardiansyah Sitepu Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Bukit Jimbaran, Badung 80361, Bali, Indonesia
  • Nyoman Semadi Antara Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Bukit Jimbaran, Badung 80361, Bali, Indonesia http://orcid.org/0000-0003-3324-7504
  • I Gusti Ayu Lani Triani Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Bukit Jimbaran, Badung 80361, Bali, Indonesia
  • I Wayan Arnata Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Bukit Jimbaran, Badung 80361, Bali, Indonesia http://orcid.org/0000-0002-7935-7357
  • Yohanes Setiyo Department of Agricultural Engineering, Faculty of Agricultural Technology, Udayana University, Bukit Jimbaran, Badung 80361, Bali, Indonesia

DOI:

https://doi.org/10.11113/jurnalteknologi.v83.15080

Keywords:

Biodesulfurization, dibenzothiophene, immobilized cells, alginate, Pseudomonas sp.

Abstract

Biodelfurization of petroleum has emerged as a potential alternative to the hydrodesulfurization and oxidative desulfurization processes. However, the main obstacle in its commercial application is the efficiency and practicality of using bacterial cells. Pseudomonas sp. strain KWN5 was tested for the ability to use dibenzothiophene (DBT) in n-tetradecane as the sole sulfur source with two phase oil-water system. The biodesulfurization ability of strain KWN5 was evaluated by immobilized cells with dibenzothiophene as substrates. The cells immobilized by entrapping them with sodium alginate (SA) had high DBT biodesulfurization activity and could degrade 100 mg DBT/L in n-tetradecane of 46.76–100%, depended on concentrations of sodium alginate and cells within 24 h at 37oC with shaking at 160 rpm. The combination of SA concentration of 3% (w/v) with bacterial cells OD660 40 (25.52 mg DCW/mL) has an optimal biodesulfurization activity on 100 mg DBT/L in n-tetradecane, which is equal to 71.85% biodesulfurization. The immobilized cells of Pseudomonas sp. strain KWN5 in alginate beads were more efficient for the degradation of DBT and can be reused for five cycles (220 h) without any loss in their activity. The results of this study clearly show the role of the effects of cell immobilization in increasing the process of biodesulfurization.

References

Gray, D. J., and R. N. Trigiano. 2011. Towards a More Sustainable Agriculture. Critical Reviews in Plant Sciences 30 (1–2): 1. DOI: 10.1080/07352689.2011.553147.

Sohrabi, M., H. Kamyab, N. Janalizadeh, and F. Z. Huyop. 2012. Bacterial Desulfurization of Organic Sulfur Compounds Exist in Fossil Fuels. Journal of Pure and Applied Microbiology 6 (2): 717–29.

Gunam, I.B.W., Y. Yaku, M. Hirano, K. Yamamura, F. Tomita, T. Sone, K. Asano. 2006. Biodesulfurization of Alkylated Forms of Dibenzothiophene and Benzothiophene by Sphingomonas subarctica T7b. Journal of Bioscience and Bioengineering 101(4): 322-327. DOI: 10.1263/jbb.101.322

Gunam, I. B. W., Y. Setiyo, N. S. Antara, I M. M. Wijaya, I W. Arnata, I W. W. P. Putra. 2020. Enhanced Delignification of Corn Straw with Alkaline Pretreatment at Mild Temperature. Rasayan Journal of Chemistry 13(2): 1022–1029. DOI: 10.31788/RJC.2020.1325573.

Xu, P., J. Feng, B. Yu, F. Li, and C. Ma. 2009. Recent Developments in Biodesulfurization of Fossil Fuels, no. May: 255–74. DOI: 10.1007/10.

Buzanello, E. B., R. P. Rezende, E. M. O. Sousa, E. D. L. S. Marques, and L. L. Loguercio. 2014. A Novel Bacillus Pumilus-Related Strain from Tropical Landfarm Soil Is Capable of Rapid Dibenzothiophene Degradation and Biodesulfurization. BMC Microbiology 14 (1): 1–10. DOI: 10.1186/s12866-014-0257-8.

Abdullah, N. R., M. Syarifuddin, M. Zaharin, A. Mohd, I. Bin, and M. R. Nawi. 2015. Effects of Ethanol Blends on Gasoline Engine Performance and Exhaust Jurnal Teknologi effects of e thanol b lends on g asoline e ngine. Jurnal Teknologi 11 (October): 107–12. DOI: 10.11113/jt.v76.5920.

Maghsoudi, S., M. Vossoughi, A. Kheirolomoom, E. Tanaka, and S. Katoh. 2001. Biodesulfurization of Hydrocarbons and Diesel Fuels by Rhodococcus sp. Strain P32C1. Biochemical Engineering Journal 8 (2): 151–56. DOI: 10.1016/S1369-703X(01)00097-3.

Bhatia, S., and D. K. Sharma. 2010. Biodesulfurization of Dibenzothiophene, Its Alkylated Derivatives and Crude Oil by a Newly Isolated Strain Pantoea agglomerans D23W3. Biochemical Engineering Journal 50 (3): 104–9. DOI: 10.1016/j.bej.2010.04.001.

Su, T., J. Su, S. Liuc, C. Zhang, J. He, Y. Huang, S. Xu, and L. Gu. 2018. Structural and Biochemical Characterization of BdsA from Bacillus subtilis WU-S2B, a Key Enzyme in the ‘4S’ Desulfurization Pathway. Frontiers in Microbiology 9 (FEB): 1–11. DOI: 10.3389/fmicb.2018.00231.

Aburto, J, N. Akhtar, M. A. Ghauri, M. A. Anwar, S. Heaphy, U. Arellano, J. M. Shen. 2014. Desalination and Water Treatment Kinetic Evaluation and Modeling for Batch Degradation Corynebacterium variabilis Sh42. Process Biochemistry 5 (4): 37–41. DOI: 10.1080/19443994.2012.744950.

Alkhalili, B. E., A. Yahya, N. Abrahim, and B. Ganapathy. 2017. Biodesulfurization of Sour Crude Oil. Modern Applied Science 11 (9): 104. DOI: 10.5539/mas.v11n9p104.

Nassar, H. N., S. F. Deriase, and N. S. El-Gendy. 2017. Statistical Optimization of Biomass Production and Biodesulfurization Activity of Rhodococcus erythropolis HN2. Petroleum Science and Technology 35 (20): 1951–59. DOI: 10.1080/10916466.2017.1373129.

Tao, F., P. Zhao, Q. Li, F. Su, B. Yu, C. Ma, H. Tang, C. Tai, G. Wu, and P. Xu. 2011. Genome Sequence of Rhodococcus erythropolis XP, a Biodesulfurizing Bacterium with Industrial Potential. Journal of Bacteriology 193 (22): 6422–23. DOI: 10.1128/JB.06154-11.

Bhasarkar, J. B., P. K. Dikshit, and V. S. Moholkar. 2015. Ultrasound Assisted Biodesulfurization of Liquid Fuel Using Free and Immobilized Cells of Rhodococcus rhodochrous MTCC 3552: A Mechanistic Investigation. Bioresource Technology 187: 369–78. https://doi.org/10.1016/j.biortech.2015.03.102.

Agarwal, M., P. K. Dikshit, J. B. Bhasarkar, A. J. Borah, and V. S. Moholkar. 2016. Physical Insight into Ultrasound-Assisted Biodesulfurization Using Free and Immobilized Cells of Rhodococcus Rhodochrous MTCC 3552. Chemical Engineering Journal 295: 254–67. https://doi.org/10.1016/j.cej.2016.03.042.

Lyu, Y., T. Zhang, B. Dou, G. Li, C. Ma, and Y. Li. 2018. A Lipopeptide Biosurfactant from: Bacillus sp. Lv13 and Their Combined Effects on Biodesulfurization of Dibenzothiophene. RSC Advances 8 (68): 38787–91. DOI: 10.1039/c8ra06693k.

Furuya, T., Y. Ishii, K. Noda, and K. Kino. 2003. Thermophilic Biodesulfurization of Hydrodesulfurized Light Gas Oils by Mycobacterium phlei WU-F1 221: 137–42. DOI: 10.1016/S0378-1097(03)00169-1.

Li, F., P. Xu, J. Feng, L. Meng, Y. Zheng, L. Luo, and C. Ma. 2005. Microbial Desulfurization of Gasoline in a Mycobacterium goodii X7B Immobilized-Cell System. Applied and Environmental Microbiology 71 (1): 276–81. DOI: 10.1128/AEM.71.1.276-281.2005.

Hou, Y., Y. Kong, J. Yang, J. Zhang, D. Shi, and W. Xin. 2005. Biodesulfurization of Dibenzothiophene by Immobilized Cells of Pseudomonas stutzeri UP-1. Fuel 84 (14–15): 1975–79. DOI: 10.1016/j.fuel.2005.04.004.

Larentis, A. L., H. C. C. Sampaio, C. C. Carneiro, O. B. Martins, and T. L. M. Alves. 2011. Evaluation of Growth, Carbazole Biodegradation and Anthranilic Acid Production by Pseudomonas stutzeri. Brazilian Journal of Chemical Engineering 28 (1): 37–44. DOI: 10.1590/S0104-66322011000100005.

Calzada, J., A. Alcon, V. E. Santos, and F. Garcia-Ochoa. 2011. Mixtures of Pseudomonas putida CECT 5279 Cells of Different Ages: Optimization as Biodesulfurization Catalyst. Process Biochemistry 46 (6): 1323–28. DOI: 10.1016/j.procbio.2011.02.025.

Bhatia, S., and D. K. Sharma. 2012. Thermophilic Desulfurization of Dibenzothiophene and Different Petroleum Oils by Klebsiella Sp. 13T. Environmental Science and Pollution Research 19 (8): 3491–97. DOI: 10.1007/s11356-012-0884-2.

Gunam, I.B.W., M. Iqbal, I W. Arnata, N. S. Antara, A. A. M. D. Anggreni, Y. Setiyo, I. B. P. Gunadnya. 2016. Biodesulfurization of Dibenzothiophene by a Newly Isolated Agrobacterium tumefaciens LSU20. Applied Mechanics and Materials 855 (October): 143–49. DOI: 10.4028/www.scientific.net/AMM.855.143

Papizadeh, M., M. R. Ardakani, H. Motamedi, I. Rasouli, and M. Zarei. 2011. C-S Targeted Biodegradation of Dibenzothiophene by Stenotrophomonas Sp. NISOC-04. Applied Biochemistry and Biotechnology 165 (3–4): 938–48. DOI: 10.1007/s12010-011-9310-3.

Gunam, I. B. W., I G. A. L. Triani, N. S. Antara, A. S. Duniaji, Y. Setiyo, and D. A. Supata. 2012. Biocatalytic Desulfurization of Dibenzothiophene by Pseudomonas sp. Strain KWN5. In Proceeding of 4th International Conference on Biosciences and Biotechnology. Advancing Life Sciences for Health and Food Security. 21st–22nd September, 2012, Udayana University, Denpasar, Bali, Indonesia Pp. 245–248.

Naito, M., T. Kawamoto, K. Fujino, M. Kobayashi, K. Maruhashi, and A. Tanaka. 2001. Long-Term Repeated Biodesulfurization by Immobilized Rhodococcus erythropolis KA2-5-1 Cells. Applied Microbiology and Biotechnology 55 (3): 374–78. DOI: 10.1007/s002530000527.

Gunam, I.B.W., K. Yamamura, I N. Sujaya, N. S. Antara, W. R. Aryanta, M. Tanaka, F. Tomita, T. Sone, and K. Asano. 2013. Biodesulfurization of Dibenzothiophene and Its Derivatives Using Resting and Immobilized Cells of Sphingomonas subarctica T7b. Journal of Microbiology and Biotechnology 23 (4): 473-482, DOI: 10.4014/jmb.1207.07070

Yu, L-Q, T. A Meyer, and B. R. Folsom. 1998. United States Patent (19), no. 19.

Chang, J. H., Y. K. Chang, H. W. Ryu, and H. N. Chang. 2000. Desulfurization of Light Gas Oil in Immobilized-Cell Systems of Gordona Sp. CYKS1 and Nocardia Sp. CYKS2. FEMS Microbiology Letters 182 (2): 309–12. DOI: 10.1016/S0378-1097(99)00604-7.

Derikvand, P., and Z. Etemadifar. 2014. Improvement of Biodesulfurization Rate of Alginate Immobilized Rhodococcus erythropolis R1. Jundishapur Journal of Microbiology 7 (3): 1–8. DOI: 10.5812/jjm.9123.

Guobin, S., X. Jianmin, G. Chen, L. Huizhou, and C. Jiayong. 2005. Biodesulfurization Using Pseudomonas delafieldii in Magnetic Polyvinyl Alcohol Beads. Letters in Applied Microbiology 40 (1): 30–36. DOI: 10.1111/j.1472-765X.2004.01617.x.

Peng, Y., and J. Wen. 2010. Modeling of DBT Biodesulfurization by Resting Cells of Gordonia Sp. WQ-01A Immobilized in Alginate Gel Beads in an Oil-Water-Immobilization System. Chemical and Biochemical Engineering Quarterly 24 (1): 85–94, https://hrcak.srce.hr/49485.

Cheng, Y., H. Y. Lin, Z. Chen, M. Megharaj, and R Naidu. 2012. Biodegradation of Crystal Violet Using Burkholderia vietnamiensis C09V Immobilized on PVA-Sodium Alginate-Kaolin Gel Beads. Ecotoxicology and Environmental Safety 83: 108–14. DOI: 10.1016/j.ecoenv.2012.06.017.

Shan, G., J. Xing, H. Zhang, and H. Liu. 2005. Biodesulfurization of Dibenzothiophene by Microbial Cells Coated with Magnetite Nanoparticles Biodesulfurization of Dibenzothiophene by Microbial Cells Coated with Magnetite Nanoparticles. Applied and Environmental Microbiology 71 (8): 4497–4502. DOI: 10.1128/AEM.71.8.4497.

Malik, M., and M. Ghosh. 2012. Immobilization Parameters Statistically Optimized for Whole Cells of Pseudomonas putida G7 to Enhance Limonin Biotransformation. Journal of Advanced Laboratory Research in Biology 3 (4): 266–75.

Quek, E., Y. P. Ting, and H. M. Tan. 2006. Rhodococcus sp. F92 Immobilized on Polyurethane Foam Shows Ability to Degrade Various Petroleum Products. Bioresource Technology 97 (1): 32–38. DOI: 10.1016/j.biortech.2005.02.031.

Selvaraj, P. T., M. H. Little, and E. N. Kaufman. 1997. Analysis of Immobilized Cell Bioreactors for Desulfurization of Flue Gases and Sulfite/Sulfate-Laden Wastewater. Biodegradation 8 (4): 227–36. DOI: 10.1023/A:1008200411998.

Bergero, M. F., and G. I. Lucchesi. 2013. Degradation of Cationic Surfactants Using Pseudomonas Putida A ATCC 12633 Immobilized in Calcium Alginate Beads. Biodegradation 24 (3): 353–64. DOI: 10.1007/s10532-012-9592-3.

Mohanty, S. S., and H. M. Jena. 2017. Biodegradation of Phenol by Free and Immobilized Cells of a Novel Pseudomonas Sp. NBM11. Brazilian Journal of Chemical Engineering 34 (1): 75–84. DOI: 10.1590/0104-6632.20170341s20150388.

Li, G. Q., S. S. Li, S. W. Qu, Q. K. Liu, T. Ma, L. Zhu, F. L. Liang, and R. L. Liu. 2008. Improved Biodesulfurization of Hydrodesulfurized Diesel Oil Using Rhodococcus erythropolis and Gordonia sp. Biotechnology Letters 30 (10): 1759–64. DOI: 10.1007/s10529-008-9748-8.

Mohamed, M. E. S., Z. H. Al-Yacoub, and J. V. Vedakumar. 2015. Biocatalytic Desulfurization of Thiophenic Compounds and Crude Oil by Newly Isolated Bacteria. Frontiers in Microbiology 6 (FEB). DOI: 10.3389/fmicb.2015.00112.

Göksungur, Y., and N. Zorlu. 2001. Production of Ethanol from Beet Molasses by Ca-Alginate Immobilized Yeast Cells in a Packed-Bed Bioreactor. Turkish Journal of Biology 25 (3): 265–75.

Samia, A., and F. A. Ahmed. 2010. Production of Bacillus licheniformis ATCC 21415 Alkaline Protease in Batch, Repeated Batch and Continuous Culture. Malaysian Journal of Microbiology 6 (2): 156–60. DOI: 10.21161/mjm.20209.

Lincoln, L. 2018. Invertase Production by Bacillus macerans Immobilized on Calcium Alginate Beads. Journal of Food Biochemistry 42 (5): 18903–10. DOI: 10.4236/aim.2013.35057.

Downloads

Published

2021-02-02

Issue

Section

Science and Engineering