Validation of Hierarchical Gene Clusters Using Repeated Measurements
DOI:
https://doi.org/10.11113/jt.v61.1616Keywords:
Hierachical clustering, gene clusters, repeated measurement, bootstrap procedure, stabilityAbstract
Hierarchical clustering is an unsupervised technique, which is a common approach to study protein and gene expression data. In clustering, the patterns of expression of different genes are grouped into distinct clusters, in which the genes in the same cluster are assumed potential to be functionally related or to be influenced by a common upstream factor. Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data analysis, the uncertainty in the results obtained is still bothersome. Experimental repetitions are generally performed to overcome the drawbacks of biological variability and technical variability. In this study, the author proposes repeated measurement to evaluate the stability of gene clusters. This paper aims to prove that the stability from the gene clusters, incorporated with repeated measurement, can be used for further analysis.References
E. Blaveri, J. L. Brewer, R. Roydasgupta, J. Fridlyand, S. DeVries, T. Koppie, S. Pejavar, K. Mehta, P. Carroll, J. P. Simko, and F. M. Waldman. 2005. Bladder Cancer Stage and Outcome by array-Based Comparative Genomic Hybridization. Clin. Cancer Res. 11(7012).
L. Brehelin, O. Gascuel and O. Martin. 2008. Using Repeated Measuremnet to Validate Hierachical Gene Clsters. Gene Expression. 24(5): 682–688.
S. Dudoit, and J. Fridlyand. 2002. A Prediction-based Resampling Method for Estimating the Number of Cluster in a Dataset. Genome Biology. 3(7): 1–21.
M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. 1998. Cluster Analysis and Display of Genome-wide Expression Patterns. Genetics. 95: 14863–14868.
M. Hertzberg, H. Aspeborg, J. Schrader, A. Andersson, R. Erlandsson, K. Blomqvist, R. Bhalerao, M. Uhlen, T. T. Teeri, J. Lundeberg, B. Sundberg, P. Nilsson, and G. Sandberg. 2001. A Transcriptional Roadmap to Wood Formation. PNAS. 98(25): 14732–14737.
M. K. Kerr, and G. A. Churchill. 2001. Bootstrapping Cluster Analysis: Assessing the Reliability of Conclusions from Microarray Experiments. Proc. Natl. Acad. Sci. 98: 8961–8965.
T. Lange, M. L. Braun, V. Roth, and J. M. Buhmann. 2003. Stability-Based model Selection. Advance in Neural Information Processing Systems. 15: 617–624.
L. M. McShane, M. D. RadMacher, B. Freidlin, R. Yu, M. C. Li, and R. Simon. 2002. Methods for Assessing Reproducibility of Clustering Patterns Observed in Analyses of Microarray Data. Bioinformatics. 18: 1462–1469.
M. Smolkin, and D. Ghosh. 2003. Cluster Stability scores for Microarray Data in Cancer Studies. BMC Bioinformatics. 4.
P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitroovsky, E. S. Lander, and T. R. Golub. 1999. Interpreting Patterns of Gene Expression with Self-Organizing Maps: Methods and Application to Hematopoietic Differentiation. Genetics. 96: 2907– 2912.
S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church. 1999. Systematic Determination of Genetic Network Architecture. Nat. Genetic. 22: 281–285.
K. Y. Yeung, D. R. Haynor, and W. L. Ruzzo. 2001. Validating Clustering for Gene Expression Data. Bioinformatics. 17: 309–318.
K. Y. Yeung, M. Medvedovix, and R. E. 2003. Bumgarner, Clsutering Gene Expression Data with Repeated measurement. Genome Biology. 4.
K. Zhang, and H. Zhao. 2000. Assessing Reliability if Gene Clusters From Gene expression Data. Funct Integr Genomics. 1: 156–173.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.