PHYTOCHEMICAL SCREENING, ANTIMICROBIAL AND ANTIOXIDANT ACTIVITY FROM SONNERATIA CASEOLARIS LEAVES EXTRACT

Authors

  • Halifah Pagarra Biology Department, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, 90224, Makassar, Indonesia https://orcid.org/0000-0001-6483-8513
  • Roshanida A. Rahman ᵇSchool of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia ᶜInstitute of Bioproduct Development, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia https://orcid.org/0000-0003-4640-2614
  • Hartati - Biology Department, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, 90224, Makassar, Indonesia https://orcid.org/0000-0001-7139-9061
  • Rachmawaty - Biology Department, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, 90224, Makassar, Indonesia
  • Yusminah Hala Biology Department, Faculty of Mathematics and Natural Science, Universitas Negeri Makassar, 90224, Makassar, Indonesia
  • Siti Marsilawati Mohamed Esivan School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.17647

Keywords:

Phytochemical, antimicrobial activity, antioxidant activity, Sonneratia caseolaris, mangrove plants

Abstract

This work deals with the screening of phytochemical compounds, and the analysis of the antimicrobial and antioxidant activity of Sonneratia caseolaris leaves from Maros Regency, South Sulawesi Province, Indonesia. The phytochemical compounds were extracted separately using n-hexane, ethyl acetate, 70% and 96% ethanol. The antimicrobial activity was assessed by measuring the clear zone in the agar diffusion method. The phytochemical screening detected the presence of alkaloids, tannins, saponins, phenolics and flavonoids extracted by four different solvents, n-hexane, ethyl acetate, 70% ethanol and 96% ethanol. The ANOVA results showed that n-hexane and 70% ethanol extract had significant antimicrobial activity (P<0.05) against E. coli, S. aureus and C. albicans, while ethyl acetate extract had no significant (P>0.05) antimicrobial activity against these three microbes. The antioxidant activity was determined using the DPPH radical scavenging assay, and the total phenolic content was determined using the Folin-Ciocalteu method. The highest radical scavenging activity of 80.21% was found in 96% ethanol extract, and the lowest antioxidant activity of 16.71% was found in ethyl acetate extract. The total phenolic content is expressed as mg of gallic acid equivalent (GAE) per gram of the extract, with the highest phenolic content, 74.77 mg GAE/g, found in the 70% ethanol extract. Meanwhile, n-hexane extract had the lowest total phenolic content of 4.67 mg GAE/g. These findings showed that S. caseolaris leaves extracts have antimicrobial and antioxidant activities, thus suggesting their potential as natural antimicrobials or antioxidants in the medicinal and food processing industries.

References

Mitra, R., Mitchell, B., Gray, C., Orbell, J., Coulepis, T., and Muralitharan, M. 2007. Medicinal Plants of Indonesia. Asia Pacific Biotech News. 11(11): 726-743.

Suhartono, E., Viani, E., Rahmadhan, M. A., Gultom, I. S., Rakhman, M. F., and Indrawardhana, D. 2012. Total Flavonoid and Antioxidant Activity of Some Selected Medicinal Plants in South Kalimantan of Indonesia. APCBEE Procedia. 4: 235-239.

DOI: https://doi.org/10.1016/j.apcbee.2012.11.039.

Sofowora, A., Ogunbodede, E., and Onayade, A. 2013. The Role and Place of Medicinal Plants in the Strategies for Disease Prevention. African Journal of Traditional, Complementary and Alternative Medicines. 10(5): 210-229.

DOI: http://dx.doi.org/10.4314/ajtcam.v10i5.2.

Ratnadewi, A. A. I., Wahyudi, L. D., Rochman, J., Susilowati, Nugraha, A. S., and Siswoyo, T. A. 2020. Revealing Antidiabetic Potency of Medicinal Plants of Meru Betiri National Park, Jember – Indonesia. Arabian Journal of Chemistry. 13: 1831-1836.

DOI: https://doi.org/10.1016/j.arabjc.2018.01.017.

Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., and Piddock, L. J. V. 2015. Molecular Mechanisms of Antibiotic Resistance. Nat. Rev. Microbiol. 13(1): 42–51.

DOI: https://doi.org/10.1038/nrmicro3380.

Marti, E., Variatza, E., and Balcazar, J. L. 2014. The Role of Aquatic Ecosystems as Reservoirs of Antibiotic Resistance. Trends in Microbiology. 22(1): 36-41.

DOI: https://doi.org/10.1016/j.tim.2013.11.001.

Newman, M. J., Frimpong, E., Donkor, E. S., Opintan, J. A., and Asamoah-Adu, A. 2011. Resistance to Antimicrobial Drugs in Ghana. Infections and Drug Resistance. 4: 215-220.

DOI: https://doi.org/10.2147/idr.s21769.

Tiwari, P., Kumar, K., Panik, R., Pandey, A., Pandey, A., Sahu, P. K., and Raipur, C. G. 2011. Antimicrobial Activity Evaluation of the Root of Carica Papaya Linn. International Journal of Pharm Tech Research. 3(3):1641-1648.

Ahmad, I., Ambarwati, N. S. S., Lukman, A., Masruhim, M. A., Rijai, L., and Mun’im, A. 2018. In vitro Antimicrobial Activity Evaluation of Mangrove Fruit (Sonneratia caseolaris L.) Extract. Pharmacog J. 10(3): 598-601.

DOI: http://dx.doi.org/10.5530/pj.2018.3.98.

Bokshi, B., Zilani, M. N. H., Hossain, H., Ahmed, M. I., Anisuzzman, M., Biswas, N. N., and Sadhu, S. K. 2020. Bioactivities of Sonneratia caseolaris (Linn) Leaf and Stem using Different Solvent Systems. Biomed J Sci & Tech Res. 31(5): 24578-24582.

DOI: http://dx.doi.org/10.26717/BJSTR.2020.31.005175.

Forman, H. J., Davies, K. J., and Ursini, F. 2014. How Do Nutritional Antioxidants Really Work: Nucleophilic Tone and Parahormesis Versus Free Radical Scavenging In Vivo. Free Radical Biology and Medicine. 66: 24-35.

DOI: https://doi.org/10.1016/j.freeradbiomed.2013.05.045.

Podsędek, A. 2007. Natural Antioxidants and Antioxidant Capacity of Brassica Vegetables: A Review. Food Science and Technology. 40(1):1-11.

DOI: https://doi.org/10.1016/j.lwt.2005.07.023.

Kim, D. O., Lee, K. W., Lee, H. J., and Lee, C. Y. 2002. Vitamin C Equivalent Antioxidant Capacity (VCEAC) of Phenolic Phytochemicals. Journal of Agricultural and Food Chemistry. 50(13): 3713-3717.

DOI: https://doi.org/10.1021/jf020071c.

Taghvaei, M. and Jafari, S.M. 2015. Application and Stability of Natural Antioxidants in Edible Oils in Order to Substitute Synthetic Additives. J. Food. Sci. Technol. 52(3): 1272-1282.

DOI: https://doi.org/10.1007/s13197-013-1080-1.

Sadhu, S. K., Ahmed, F., Ohtsuki, T., and Ishibashi, M. 2006. Flavonoids from Sonneratia caseolaris. Natural Medicine Note. 60(3): 264-265.

Doi: https://doi.org/10.1007/s11418-006-0029-3.

Rani P. U., Sandhyarani, K., Vadlapudi, V. and Sreedhar, B. 2015. Bioefficacy of a Mangrove Plant, Sonneratia caseolaris and a Mangrove Associate Plant, Hibiscus tiliaceus Against Certain Agricultural and Stored Product Pests. J. Biopest. 8(2): 98-106.

Devi, P., Solimabi, W., D’Souza, L. and Kamat, S. Y. 1997. Toxic Effects of Coastal and Marine Plant Extracts on Mosquito Larvae. Botanica Marina. 40: 533-535.

Jariyah, Widjanarko, S. B., Yunianto, Estiasih, T. 2015. Phytochemical and Acute Toxicity Studies of Ethanol Extract from Pedada (Sonneratia caseolaris) Fruit Flour (PFF). International Journal on Advanced Science Engineering Information Technology. 5(2): 39-42.

Bandaranayake, W. 2002. Bioactive Compounds and Chemical Constituent of Mangrove Plants. Wetlands Ecology and Management.10: 421-422.

DOI: https://doi.org/10.1023/A:1021397624349.

Pagarra, H., Hartati., Rachmawaty., Hala, Y. and Rahman, A. R. 2019. Phytochemical Screening and Antimicrobial Activity from Sonneratia caseolaris Fruits Extract. Materials Science Forum. 967: 28-33.

DOI: https://doi.org/10.4028/www.scientific.net/MSF.967.28.

Munira, M. S., Islam, M. S., Akther, N., and Koly, S. F. 2019. Estimation of Anti-Inflammatory, Analgesic and Thrombolytic Activities of Sonneratia caseolaris Linn. (Family: Sonneratiaceae). Journal of Analytical & Pharmaceutical Research. 8(1): 20-23.

DOI: https://doi.org/10.15406/japlr.2019.08.00305.

Rao, U. S. M., Abdurrazak, M., and Mohd, K. S. 2015. Phytochemical Screening, Total Flavonoid and Phenolic Content Assays of Various Solvent Extracts of Tepal of Musa paradisiaca. Malaysian Journal of Analytical Sciences. 20(5): 1181-1190.

DOI: http://dx.doi.org/10.17576/mjas-2016-2005-25.

Murray, P. R., Baron, E. J., Pfaller, M. A., Tenover, F. C., Yolken, R. H., and Morgan, D. R. 1995. Manual of Clinical Microbiology (6th edn). Trends in Microbiology. 3(11): 449-449.

Sen, A. and Amla, B. 2012. Evaluation of Antimicrobial Activity of Different Solvent Extracts of Medicinal Plant: Melia azedarach. International Journal of Current Pharmaceutical Research. 4(2): 67-73.

Millauskas, G., Venskutonis, R. R., and van Beek, T. A. 2004. Screening of Radical Scavenging Activity of Some Medicinal and Aromatic Plant Extracts. Food Chemistry. 85(9): 231-237.

DOI: https://doi.org/10.1016/j.foodchem.2003.05.007.

Oikeh, E. I., Oriakhi, K., and Omoregie, E. S. 2013. Proximate Analysis and Phytochemical Screening of Citrus sinensis Leaves Wastes. The Bioscientist. 1(2):164-170.

Souto, A. L., Tavares, J. F., da Silva, M. S., Diniz, M. d. F. F. M., de Athayde-Filho, P. F., and Filho, J. M. B. 2011. Anti-Inflammatory Activity of Alkaloids: An Update From 2000 to 2010. Molecules. 16: 8515-8534.

DOI: https://dx.doi.org/10.3390%2Fmolecules16108515.

Dua, V. K., Gaurav, V., Bikram, S., Aswathy, R., Upma, B., Dau, D. A., Gupta, N. C., Sandeep, K., and Ayushi, R., 2013. Anti-Malarial Property of Steroidal Alkaloid Conessine Isolated from the Bark of Holarrhena antidysenterica. Malaria Journal. 12: 194.

DOI: https://doi.org/10.1186/1475-2875-12-194.

Benbott, A., Yahyia, A., Belaïdi, A., 2012. Assessment of the Antibacterial Activity of Crude Alkaloids Extracted from Seeds and Roots of the Plant Peganum harmala L. Journal of Natural Product and Plant Resources. 2(5): 568-573.

Kurek, J. 2019. Introductory Chapter: Alkaloids—Their Importance in Nature and for Human Life. In Alkaloids—Their Importance in Nature and Human Life; IntechOpen: London, UK.

DOI: 10.5772/intechopen.85400.

Pizzi, A. 2021. Tannins Medical / Pharmacological and Related Applications: A Critical Review. Sustainable Chemistry and Pharmacy. 22: 100481.

DOI: https://doi.org/10.1016/j.scp.2021.100481.

Sharma, P., Tyagi, A., Bhansali, P., Pareek, S., Singh, V., Ilyas, A., Mishra, R., and Poddar, N. K. 2021. Saponins: Extraction, Bio-Medicinal Properties and Way Forward to Anti-Viral Representatives. Food and Chemical Toxicology. 150: 112075.

DOI: https://doi.org/10.1016/j.fct.2021.112075.

Lobo, V., Patil, A., Phatak, A., and Chandra, N. 2010. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacognosy Review. 4(8): 118-126. PMID: 22228951; PMCID: PMC3249911.

DOI: https://doi.org/10.4103/0973-7847.70902.

Rani, R., Arora, S., Kaur, J., and Manhas, R. K. 2018. Phenolic Compounds as Antioxidants and Chemopreventive Drugs from Streptomyces cellulosae strain TES17 Isolated from Rhizosphere of Camellia sinensis. BMC Complementary and Alternative Medicine. 18: 82.

DOI: https://doi.org/10.1186/s12906-018-2154-4.

Yamagishi, S., and Matsui, T. 2011. Nitric Oxide, a Janus-faced Therapeutic Target for Diabetic Microangiopathy-Friend or Foe? Pharmacol Res. 64(3): 187-194.

DOI: https://doi.org/10.1016/j.phrs.2011.05.009

Krishnaiah, D., Sarbatly, R., and Nithyanandam, R. R. 2011. A Review of the Antioxidant Potential of Medicinal Plant Species. Food and Bioproducts Processing. 89(3): 217-233.

DOI: https://doi.org/10.1016/j.fbp.2010.04.008.

Saeed, N., Khan, M. R., and Shabbir, M. 2012. Antioxidant Activity, Total Phenolic and Total Flavonoid Contents of Whole Plant Extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine. 12: 221

DOI: https://doi.org/10.1186/1472-6882-12-221.

Blainski, A., Lopes, G. C., and de Mello, J. C. P. 2013. Application and Analysis of the Folin-Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules. 18: 6852-6865.

DOI: https://doi.org/10.3390/molecules18066852.

Labiad, M. H., Harhar, H., Ghanimi, A. and Tabyaouh, M. 2017. Phytochemical Screening and Antioxidant Activity of Moroccan Thymus satureioïdes Extracts. Journal of Materials and Environmental Sciences. 8(6): 2123-2139.

Downloads

Published

2022-07-26

Issue

Section

Science and Engineering

How to Cite

PHYTOCHEMICAL SCREENING, ANTIMICROBIAL AND ANTIOXIDANT ACTIVITY FROM SONNERATIA CASEOLARIS LEAVES EXTRACT. (2022). Jurnal Teknologi, 84(5), 59-66. https://doi.org/10.11113/jurnalteknologi.v84.17647