ELBOW ANGLE ESTIMATION FROM EMG SIGNALS BASED ON MONTE CARLO SIMULATION
DOI:
https://doi.org/10.11113/jurnalteknologi.v84.17683Keywords:
Muscle signal, elbow angle, estimation, Monte Carlo, EMGAbstract
Monte Carlo simulation is defined as statistical sampling techniques which is used to estimate the solutions of quantitative problems. The aim of this study is to develop Monte Carlo algorithm for elbow angle estimation from EMG signal as preliminary study for further research in rehabilitation tool to make a breakthrough rehabilitation tool for post-stroke patients based on muscle signals to carry out rehabilitation independently and consistently. The Monte Carlo simulation is performed to approach the model’s angle from subject who takes 20 seconds lifting barbell repeatedly for 52 times. Monte Carlo simulations were carried out as many as 10,000 times because it was considered ideal testing for a model. In doing the estimation, the angle will be divided into four ranges, which are determined from the model’s trend value, the estimation of the previous angle, the estimated error angle, and the previous measured angle. Then an average calculation is performed on the Monte Carlo simulation, which enters the angle range to determine the estimated value of the angle. The most optimal estimation is obtained from this study with RMSE (root mean square error) was 8.96°, and the correlation coefficient between estimate angle and the measured angle was 0.96.
References
Dinata, C. A., Syafrita, Y., Sastri, S. 2013. Gambaran Faktor Risiko dan Tipe Stroke Pada Pasien Rawat Inap di Bagian Penyakit dalam RSUD Kabupaten Solok Selatan Periode 1 Januari 2010 - 31 Juni 2012. Jurnal Kesehatan Andalas. 2(2): 57-61.
Venketasubramanian, N., Yoon, B. W., Pandian, J., Navarro, J. C. 2017. Stroke Epidemiology in South, East, and South-East Asia: A Review. J Stroke. 19(3): 286-94.
Purwanti, O. S., Maliya, A. 2008. Rehabilitasi Klien Pasca Stroke. Berita Ilmu Keperawatan. 1(1): 43-6.
Barnes, M. P., Dobkin, B. H., Bogousslavsky, J., Editors. 2005. Recovery After Stroke [Internet]. Cambridge: Cambridge University Press; Available from: https://www.cambridge.org/core/books/recovery-after-stroke/0F080B1C65F050BAE47BDB060F54C85C.
Tao, J., Yu, S. 2019. Developing Conceptual PSS Models of Upper Limb Exoskeleton based Post-stroke Rehabilitation in China. Procedia CIRP. 80: 750-5.
Morris, A. F. 1985. Therapeutic Exercise. 4th ed. Adapted Physical Activity Quarterly. 2(1): 86-8.
Rhestifujiayani, E., Huriani, E., Muharriza, M. 2015. Comparison of Muscle Strength in Stroke Patients between the Given and Not Given Range of Motion Exercise. Nurse Media Journal of Nursing. 5(2): 88-100.
Paquin, J., Power, G. A. 2018. History Dependence of the EMG-torque Relationship. J Electromyogr Kinesiol. 41: 109-15.
Bakara, D. M., Warsito, S. 2016. Latihan Range of Motion (ROM) Pasif Terhadap Rentang Sendi Pasien Pasca Stroke. Idea Nursing Journal. 7(2): 12-8.
Myers, L. J., Lowery, M., O’Malley, M., Vaughan, C. L., Heneghan, C., St Clair Gibson, A. et al. 2003. Rectification and Non-linear Preprocessing of EMG Signals for Cortico-muscular Analysis. Journal of Neuroscience Methods. 124(2): 157-65.
Doheny, E. P., Lowery, M. M., FitzPatrick, D. P., O’Malley, M. J. 2007. Effect of Elbow Joint Angle on Force–EMG Relationships in Human Elbow Flexor and Extensor Muscles. Journal of Electromyography and Kinesiology. 18(5): 760-70.
Zhou, Y., Liu, J., Zeng, J., Li, K., Liu, H. 2018. Bio-signal based Elbow Angle and Torque Simultaneous Prediction during Isokinetic Contraction. Sci China Technol Sci. 62(1): 21-30.
Pang M. 2015. Electromyography-based Quantitative Representation Method for Upper-limb Elbow Joint Angle in Sagittal Plane. J Med Biol Eng. 33: 165-77.
Mamikoglu, U., Nikolakopoulos, G., Pauelsen, M., Varagnolo, D., Roijezon, U., Gustafsson, T. 2016. Elbow Joint Angle Estimation by using Integrated Surface Electromyography. 24th Mediterranean Conference on Control and Automation (MED) [Internet]. Athens, Greece: IEEE. 785-90. Available from: http://ieeexplore.ieee.org/document/7535891/.
Mooney, C. Z. 1997. Monte Carlo Simulation. Sage University Paper. 07-116(3).
Heymsfield, S. B., McManus, C., Smith, J., Stevens, V., Nixon, D. W. 1982. Anthropometric Measurement of Muscle Mass: Revised Equations for Calculating Bone-free Arm Muscle Area. Am J Clin Nutr. 36(4): 680-90.
Maeda, K., Konaka, E., Okuda, H., Suzuki, T. 2012. Hierarchical Modelling of Obstacle Avoidance and Steering Behaviour. 19th ITS World Congress, Vienna, Austria. Available from: https://trid.trb.org/view/1268144.
Clancy, E. A., Morin, E. L., Merletti R. 2002. Sampling, Noise-reduction and Amplitude Estimation Issues in Surface Electromyography. J Electromyogr Kinesiol. 12(1): 1-16.
Schober, P., Boer, C., Schwarte, L. A. 2018. Correlation Coefficients: Appropriate Use and Interpretation. Anesthesia & Analgesia. 126(5): 1763-1768.
Rindengan, A. J., Mananohas, M. 2017. Perancangan Sistem Penentuan Tingkat Kesegaran Ikan Cakalang Menggunakan Metode Curve Fitting Berbasis Citra Digital Mata Ikan. Jurnal Ilmiah Sains. 17(2): 161-8.
Bihani, A. 2014. A New Approach to Monte Carlo Simulation of Operations. International Journal of Engineering Trends and Technology - IJETT [Internet]. Available from: http://ijettjournal.org/archive/ijett-v8p240.
Liu, M. 2017. Optimal Number of Trials for Monte Carlo Simulation [Internet]. Available from: https://mliu.org/valuation/optimal-number-of-trials-for-monte-carlo-simulation/.
Quinlan, B. 2015. Dimensional Analysis: How Many Monte Carlo Simulations Should I Run? Part 2 [Internet]. DCS Engineering in New Dimensions. Available from: https://blog.3dcs.com/dimensional-analysis-how-many-monte-carlo-simulations-should-i-run.
Lee, W., Kim, H., Hwang, S., Zanobetti, A., Schwartz, J. D., Chung, Y. 2017. Monte Carlo Simulation-based Estimation for the Minimum Mortality Temperature in Temperature-Mortality Association Study. BMC Medical Research Methodology. 17(1): 137.
Lerche, I., Mudford, B. S. 2005. How Many Monte Carlo Simulations Does One Need to Do? Energy Exploration & Exploitation. 23(6): 405-27.
Pradana, D. C., Maruddani, D. A. I., Yasin, H. 2015. Penggunaan Simulasi Monte Carlo Untuk Pengukuran Value at Risk Aset Tunggal Dan Portofolio Dengan Pendekatan Capital Asset Pricing Model Sebagai Penentu Portofolio Optimal. Jurnal Gaussian. 4(4): 10.
Triwiyanto, T., Wahyunggoro, O., Nugroho, H. A., Herianto, H. 2017. Evaluating the Performance of Kalman Filter on Elbow Joint Angle Prediction based on Electromyography. Int J Precis Eng Manuf. 18(12): 1739-48.
Snoeck, O., Lefèvre, P., Sprio, E., Beslay, R., Feipel, V.; Rooze, M., Jan, S. V. S. 2014. The Lacertus Fibrosus of the Biceps Brachii Muscle: An Anatomical Study. Surg Radiol Anat. 36: 713-719.
Aeles, J., Horst, F., Lapuschkin, S., Lacourpaille, L., Hug, F. 2021. Revealing the Unique Features of Each Individual’s Muscle Activation Signatures. J. R. Soc. Interface. 18: 20200770.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.