RESEARCH PROGRESS ON MICROBIAL SELF-HEALING CONCRETE

Authors

  • Bao Fang Yip School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia https://orcid.org/0000-0002-4623-537X
  • Mohd Ridza Mohd Haniffah School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia https://orcid.org/0000-0001-9073-390X
  • Erwan Hafizi Kasiman School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia https://orcid.org/0000-0002-0027-1404
  • Ahmad Razin Zainal Abidin School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.17895

Keywords:

Microbial concrete, self-healing, microbial induced calcium carbonate precipitation, bacteria, crack

Abstract

Crack formation in concrete is inevitable. The cracks allow the penetration of harmful substances which may decrease the durability and the service life of concrete structures. Self-healing concrete is therefore emerging as an innovative construction material to tackle the cracking issues. In recent years, microbial self-healing concrete is garnering interest from many researchers due to its environmentally-friendly nature and the concrete compatibility of microbially-induced calcium carbonate precipitation. Various metabolic mechanisms have been used for microbial self-healing concrete production and urea hydrolysis is the most preferable metabolic pathway due to its fast and high precipitation of calcium carbonate. In this paper, a comprehensive review on the research progress on microbial self-healing concrete is presented together with the numerical modelling of microbial self-healing concrete. The challenges and limitations of microbial self-healing concrete are discussed along with the recommendations for its prospective uses in the construction industry. It is found that the survival of bacteria through direct addition technique is limited and needs further investigation. The immobilization technique gives a promising result in durability properties but doesn’t reach the mechanical requirement. Moreover, a comprehensive assessment of self-healing efficiency is required, and more efforts are needed to improve from laboratory scale to large-scaled application.

References

A. Al-Tabbaa, C. Litina, P. Giannaros, A. Kanellopoulos, and L. Souza. 2019. First UK Field Application and Performance of Microcapsule-based Self-healing Concrete. Construction and Building Materials. 208: 669-685. Doi: 10.1016/j.conbuildmat.2019.02.178.

R. Davies et al. 2018. Large Scale Application of Self-Healing Concrete: Design, Construction, and Testing. Front. Mater. Doi: 10.3389/fmats.2018.00051.

V. C. Li and E. Herbert. 2012. Robust Self-Healing Concrete for Sustainable Infrastructure. Journal of Advanced Concrete Technology. 10(6): 207-218. Doi: 10.3151/jact.10.207.

F. Hammes and W. Verstraete. 2002. Key Roles of pH and Calcium Metabolism in Microbial Carbonate Precipitation. Reviews in Environmental Science and Biotechnology. 1(1): 3-7. Doi: 10.1023/A:1015135629155.

N. K. Dhami, M. S. Reddy, and A. Mukherjee. 2013. Bacillus Megaterium Mediated Mineralization of Calcium Carbonate as Biogenic Surface Treatment of Green Building Materials. World Journal of Microbiology and Biotechnology. 29(12): 2397-2406. Doi: 10.1007/s11274-013-1408-z.

P. A. M. Lesley A. Warren Nagina Parmar, F. Grant Ferris. 2001. ‘Microbially Mediated Calcium Carbonate Precipitation: Implications for Interpreting Calcite Precipitation and for Solid-Phase Capture of Inorganic Contaminants’, Geomicrobiology Journal. 18(1): 93-115. Doi: 10.1080/01490450151079833.

B. C. Martinez et al. 2013. Experimental Optimization of Microbial-induced Carbonate Precipitation for Soil Improvement. Journal of Geotechnical and Geoenvironmental Engineering. 139(4): 587-598. Doi: 10.1061/(ASCE)GT.1943-5606.0000787.

R. Micallef, D. Vella, E. Sinagra, and G. Zammit. 2016. Biocalcifying Bacillus Subtilis Cells Effectively Consolidate Deteriorated Globigerina Limestone. J Ind Microbiol Biotechnol. 43(7): 941-952. Doi: 10.1007/s10295-016-1768-0.

S. Stocks-Fischer, J. K. Galinat, and S. S. Bang. 1999. Microbiological Precipitation of CaCO3’. Soil Biology and Biochemistry. 31(11): 1563-1571. Doi: 10.1016/S0038-0717(99)00082-6.

K. Van Tittelboom, N. De Belie, W. De Muynck, and W. Verstraete. 2010. Use of Bacteria to Repair Cracks in Concrete. Cement and Concrete Research. 40(1): 157-166.

Doi: https://doi.org/10.1016/j.cemconres.2009.08.025.

G. Le Métayer-Levrel, S. Castanier, G. Orial, J.-F. Loubière, and J.-P. Perthuisot. 1999. Applications of Bacterial Carbonatogenesis to the Protection and Regeneration of Limestones in Buildings and Historic Patrimony. Sedimentary Geology. 126(1): 25-34. Doi: 10.1016/S0037-0738(99)00029-9.

C. Rodriguez-Navarro, M. Rodriguez-Gallego, K. Ben Chekroun, and M. T. Gonzalez-Muñoz. 2003. Conservation of Ornamental Stone by Myxococcus xanthus-Induced Carbonate Biomineralization. Applied and Environmental Microbiology. 69(4): 2182-2193.

Doi: 10.1128/AEM.69.4.2182-2193.2003.

P. Tiano, L. Biagiotti, and G. Mastromei. 1999. Bacterial Bio-mediated Calcite Precipitation for Monumental Stones Conservation: Methods of Evaluation. Journal of Microbiological Methods. 36(1): 139-145.

Doi: 10.1016/S0167-7012(99)00019-6.

Q. Chunxiang, W. Jianyun, W. Ruixing, and C. Liang. 2009. Corrosion Protection of Cement-based Building Materials by Surface Deposition of CaCO3 by Bacillus Pasteurii. Materials Science and Engineering: C. 29(4): 1273-1280. Doi: https://doi.org/10.1016/j.msec.2008.10.025.

N. W. V. De Muynck Willem, Kathelijn Cox, De Belie. 2008. Bacterial Carbonate Precipitation as an Alternative Surface Treatment for Concrete. Construction and Building Materials. 22(5): 875-885.

Doi: https://doi.org/10.1016/j.conbuildmat.2006.12.011.

W. De Muynck, K. Verbeken, N. De Belie, and W. Verstraete. 2013. Influence of Temperature on the Effectiveness of a Biogenic Carbonate Surface Treatment for Limestone Conservation. Applied Microbiology and Biotechnology. 97(3): 1335-1347. Doi: 10.1007/s00253-012-3997-0.

H. Kalhori and R. Bagherpour. 2017. Application of Carbonate Precipitating Bacteria for improving Properties and Repairing Cracks of Shotcrete. Construction and Building Materials. 148: 249-260.

Doi: https://doi.org/10.1016/j.conbuildmat.2017.05.074.

W. De Muynck, N. De Belie, and W. Verstraete. 2010. Microbial Carbonate Precipitation in Construction Materials: A Review. Ecological Engineering. 36(2): 118-136. Doi: https://doi.org/10.1016/j.ecoleng.2009.02.006.

C. Qian, R. Wang, L. Cheng, and J. Wang. 2010. Theory of Microbial Carbonate Precipitation and Its Application in Restoration of Cement-based Materials Defects. Chinese Journal of Chemistry. 28(5): 847-857.

Doi: 10.1002/cjoc.201090156.

E. Tziviloglou et al. 2016. Bio-Based Self-Healing Concrete: From Research to Field Application. Self-healing Materials. M. D. Hager, S. van der Zwaag, and U. S. Schubert, Eds. Cham: Springer International Publishing. 345-385.

Doi: 10.1007/12_2015_332.

V. Wiktor and H. Jonkers. 2011. Determination of the Crack Self-Healing Capacity of Bacterial Concrete. Proc. Concrete Solutions.

V. Wiktor and H. M. Jonkers. 2015, Field Performance of Bacteria-based Repair System: Pilot Study in a Parking Garage. Case Studies in Construction Materials. 2: 11-17. Doi: https://doi.org/10.1016/j.cscm.2014.12.004.

S. Castanier, G. L. Métayer-Levrel, and J.-P. Perthuisot. 1999. Ca-carbonates Precipitation and Limestone Genesis — The Microbiogeologist Point of View. Sedimentary Geology. 126(1): 9-23. Doi: https://doi.org/10.1016/S0037-0738(99)00028-7.

T. Zhu, C. Paulo, M. L. Merroun, and M. Dittrich. 2015. Potential Application of Biomineralization by Synechococcus PCC8806 for Concrete Restoration. Ecological Engineering. 82: 459-468.

Doi: https://doi.org/10.1016/j.ecoleng.2015.05.017.

T. Zhu, X. Lu, and M. Dittrich. 2017. Calcification on Mortar by Live and UV-killed Biofilm-forming Cyanobacterial Gloeocapsa PCC73106. Construction and Building Materials. 146: 43-53.

Doi: https://doi.org/10.1016/j.conbuildmat.2017.04.026.

G. Kaur, N. K. Dhami, S. Goyal, A. Mukherjee, and M. S. Reddy. 2016. Utilization of Carbon Dioxide as an Alternative to Urea in Biocementation. Construction and Building Materials. 123: 527-533.

Doi: https://doi.org/10.1016/j.conbuildmat.2016.07.036.

Y. C. Ersan. 2016. Microbial Nitrate Reduction Induced Autonomous Self-healing in Concrete. PhD Thesis. Ghent University. Faculty of Bioscience Engineering.

Y. Ç. Erşan, E. Hernandez-Sanabria, N. Boon, and N. de Belie. 2016. Enhanced Crack Closure Performance of Microbial Mortar through Nitrate Reduction. Cement and Concrete Composites. 70: 159-170.

Doi: https://doi.org/10.1016/j.cemconcomp.2016.04.001.

Y. Ç. Erşan, E. Gruyaert, G. Louis, C. Lors, N. De Belie, and N. Boon. 2015. Self-protected Nitrate Reducing Culture for Intrinsic Repair of Concrete Cracks. Frontiers in Microbiology. 6: 1228. Doi: 10.3389/fmicb.2015.01228.

Y. Ç. Erşan, H. Verbruggen, I. D. Graeve, W. Verstraete, N. D. Belie, and N. Boon. 2016. Nitrate Reducing CaCO3 Precipitating Bacteria Survive in Mortar and Inhibit Steel Corrosion. Cement and Concrete Research. 83: 19-30. Doi: https://doi.org/10.1016/j.cemconres.2016.01.009.

Y. Ç. Erşan, K. Van Tittelboom, N. Boon, and N. De Belie. 2018. Nitrite Producing Bacteria Inhibit Reinforcement Bar Corrosion in Cementitious Materials. Scientific Reports. 8(1): 14092. [Online]. Available: https://doi.org/10.1038/s41598-018-32463-6.

Y. Ç. Erşan, N. de Belie, and N. Boon. 2015. Microbially Induced CaCO3 Precipitation through Denitrification: An Optimization Study in Minimal Nutrient Environment. Biochemical Engineering Journal. 101: 108-118.

Doi: https://doi.org/10.1016/j.bej.2015.05.006.

J. Luo et al. 2018. Interactions of Fungi with Concrete: Significant Importance for Bio-based Self-healing Concrete. Construction and Building Materials. 164: 275-285.

Doi: https://doi.org/10.1016/j.conbuildmat.2017.12.233.

R. R. Menon et al. 2019. Screening of Fungi for Potential Application of Self-Healing Concrete. Scientific Reports. 9(1): 2075. [Online]. Available: https://doi.org/10.1038/s41598-019-39156-8.

P. Ghosh, S. Mandal, S. Pal, G. Bandyopadhyaya, and B. Chattopadhyay. 2006. Development of Bioconcrete Material using an Enrichment Culture of Novel Thermophilic Anaerobic Bacteria.

P. Ghosh, S. Mandal, B. D. Chattopadhyay, and S. Pal. 2005. Use of Microorganism to Improve the Strength of Cement Mortar. Cement and Concrete Research. 35(10): 1980-1983. ,

Doi: https://doi.org/10.1016/j.cemconres.2005.03.005.

A. Gandhimathi and D. Suji. 2015. Studies on the Development of Eco-friendly Self-healing Concrete - A Green Building Concept. Nature Environment and Pollution Technology. 14(3): 639.

H. M. Jonkers and E. Schlangen. 2007. Crack Repair by Concrete-immobilized Bacteria. Proceedings of the First International Conference on Self Healing Materials. 18: 20.

H. M. Jonkers. 2011. Bacteria-based Self-healing Concrete. Heron. 56(1/2).

H. M. Jonkers and E. Schlangen. 2008. Development of a Bacteria-based Self Healing Concrete. Proc. int. FIB Symposium. 1: 425-430.

H. M. Jonkers, A. Thijssen, G. Muyzer, O. Copuroglu, and E. Schlangen. 2010. Application of Bacteria as Self-healing Agent for the Development of Sustainable concrete. Ecological Engineering. 36(2): 230-235.

Doi: https://doi.org/10.1016/j.ecoleng.2008.12.036.

W. Khaliq and M. B. Ehsan. 2016. Crack Healing in Concrete using Various Bio Influenced Self-healing Techniques. Construction and Building Materials. 102: 349-357.

Doi: https://doi.org/10.1016/j.conbuildmat.2015.11.006.

C. Kumari, B. Das, R. Jayabalan, R. Davis, and P. Sarkar. 2016. Effect of Nonureolytic Bacteria on Engineering Properties of Cement Mortar. Journal of Materials in Civil Engineering. 29: 06016024.

Doi: 10.1061/(ASCE)MT.1943-5533.0001828.

M. Luo and C. Qian. 2016. Influences of Bacteria-based Self-healing Agents on Cementitious Materials Hydration Kinetics and Compressive Strength. Construction and Building Materials. 121: 659-663.

Doi: https://doi.org/10.1016/j.conbuildmat.2016.06.075.

M. Luo, C. Qian, and R. Li. 2015. Factors Affecting Crack Repairing Capacity of Bacteria-based Self-healing Concrete. Construction and Building Materials. 87: 1-7. Doi: https://doi.org/10.1016/j.conbuildmat.2015.03.117.

T. K. Sharma, M. Alazhari, A. Heath, K. Paine, and R. M. Cooper. 2017. Alkaliphilic Bacillus Species Show Potential Application in Concrete Crack Repair by Virtue of Rapid Spore Production and Germination Then Extracellular Calcite Formation. Journal of Applied Microbiology. 122(5): 1233-1244.

Doi: 10.1111/jam.13421.

M. G. Sierra-Beltran, H. M. Jonkers, and E. Schlangen. 2014. Characterization of Sustainable Bio-based Mortar for Concrete Repair. Construction and Building Materials. 67: 344-352.

Doi: https://doi.org/10.1016/j.conbuildmat.2014.01.012.

E. Tziviloglou, V. Wiktor, H. M. Jonkers, and E. Schlangen. 2016. Bacteria-based Self-healing Concrete to Increase Liquid Tightness of Cracks. Construction and Building Materials. 122: 118-125.

Doi: https://doi.org/10.1016/j.conbuildmat.2016.06.080.

E. Tziviloglou, Z. Pan, H. M. Jonkers, and E. Schlangen. 2017. Bio-based Self-healing Mortar: An Experimental and Numerical Study. Journal of Advanced Concrete Technology. 15(9): 536–543. Doi: 10.3151/jact.15.536.

V. Wiktor and H. M. Jonkers. 2011. Quantification of Crack-healing in Novel Bacteria-based Self-healing Concrete. Cement and Concrete Composites. 33(7): 763-770. Doi: https://doi.org/10.1016/j.cemconcomp.2011.03.012.

J. Xu and W. Yao. 2014. Multiscale Mechanical Quantification of Self-healing Concrete Incorporating Non-ureolytic Bacteria-based Healing Agent. Cement and Concrete Research. 64: 1-10.

Doi: https://doi.org/10.1016/j.cemconres.2014.06.003.

S. V. Zemskov, H. M. Jonkers, and F. J. Vermolen. 2014. A Mathematical Model for Bacterial Self-healing of Cracks in Concrete. Journal of Intelligent Material Systems and Structures. 25(1): 4-12.

Doi: 10.1177/1045389X12437887.

J. Zhang et al. 2017. Immobilizing Bacteria in Expanded Perlite for the Crack Self-healing in Concrete. Construction and Building Materials. 148: 610-617.

Doi: https://doi.org/10.1016/j.conbuildmat.2017.05.021.

J. L. Zhang et al. 2016. A Binary Concrete Crack Self-healing System Containing Oxygen-releasing Tablet and Bacteria and its Ca2+-precipitation Performance. Applied Microbiology and Biotechnology. 100(24): 10295-10306. Doi: 10.1007/s00253-016-7741-z.

J. L. Zhang et al. 2016. Screening of Bacteria for Self-healing of Concrete Cracks and Optimization of the Microbial Calcium Precipitation Process. Applied Microbiology and Biotechnology. 100(15): 6661-6670. Doi: 10.1007/s00253-016-7382-2.

V. Achal, X. Pan, and N. Özyurt. 2011. Improved Strength and Durability of Fly Ash-amended Concrete by Microbial Calcite Precipitation. Ecological Engineering. 37(4): 554-559.

Doi: https://doi.org/10.1016/j.ecoleng.2010.11.009.

V. Achal, A. Mukherjee, S. Goyal, and Ms. Reddy. 2012. Corrosion Prevention of Reinforced Concrete with Microbial Calcite Precipitation. ACI Materials Journal. 109(2): 157-164. Doi: 10.14359/51683702.

V. Achal, A. Mukherjee, and M. S. Reddy. 2011. Microbial Concrete: Way to Enhance the Durability of Building Structures. Journal of Materials in Civil Engineering. 23(6): 30-734.

V. Achal, A. Mukerjee, and M. S. Reddy. 2013. Biogenic treatment Improves the Durability and Remediates the Cracks of Concrete Structures. Construction and Building Materials. 48: 1-5.

Doi: https://doi.org/10.1016/j.conbuildmat.2013.06.061.

V. Achal, A. Mukherjee, and M. S. Reddy. 2010 Biocalcification by Sporosarcina Pasteurii using Corn Steep Liquor as the Nutrient Source. Industrial Biotechnology. 6(3): 170-174.

Doi: 10.1089/ind.2010.6.170.

V. Achal, A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Lactose Mother Liquor as an Alternative Nutrient Source for Microbial Concrete Production by Sporosarcina Pasteurii. Journal of Industrial Microbiology & Biotechnology. 36(3): 433-438. Doi: 10.1007/s10295-008-0514-7.

V. Achal, A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Strain Improvement of Sporosarcina pasteurii for Enhanced Urease and Calcite Production. Journal of Industrial Microbiology & Biotechnology. 36(7): 981-988. Doi: 10.1007/s10295-009-0578-z.

R. Andalib et al. 2016. Optimum Concentration of Bacillus Megaterium for Strengthening Structural Concrete. Construction and Building Materials. 118: 180-193.

Doi: https://doi.org/10.1016/j.conbuildmat.2016.04.142.

S. S. Bang, J. K. Galinat, and V. Ramakrishnan. 2001. Calcite Precipitation Induced by Polyurethane-Immobilized Bacillus pasteurii’. Enzyme and Microbial Technology. 28(4): 404-409. Doi: https://doi.org/10.1016/S0141-0229(00)00348-3.

R. Bansal, N. K. Dhami, A. Mukherjee, and M. S. Reddy. 2016. Biocalcification by Halophilic Bacteria for Remediation of Concrete Structures in Marine Environment. Journal of Industrial Microbiology & Biotechnology. 43(11): 1497-1505. Doi: 10.1007/s10295-016-1835-6.

Z. Basaran. 2013. Biomineralization in Cement based Materials: Inoculation of Vegetative Cells. PhD Thesis.

Z. B. Bundur, M. J. Kirisits, and R. D. Ferron. 2015. Biomineralized Cement-based Materials: Impact of Inoculating Vegetative Bacterial Cells on Hydration And Strength. Cement and Concrete Research. 67: 237-245.

Doi: https://doi.org/10.1016/j.cemconres.2014.10.002.

N. Chahal, R. Siddique, and A. Rajor. 2012. Influence of Bacteria on the Compressive Strength, Water Absorption and Rapid Chloride Permeability of Concrete Incorporating Silica Fume. Construction and Building Materials. 37: 645-651. Doi: https://doi.org/10.1016/j.conbuildmat.2012.07.029.

N. Chahal, R. Siddique, and A. Rajor. 2012. Influence of Bacteria on the Compressive Strength, Water Absorption and Rapid Chloride Permeability of Fly Ash Concrete. Construction and Building Materials. 28(1): 351-356. , doi: https://doi.org/10.1016/j.conbuildmat.2011.07.042.

B. Chattopadhyay and M. Sarkar. 2016. Genetically Modified Bacillus Subtilis Bacterial Strain for Self-healing and Sustainable Green Bioconcrete Material.

F. B. da Silva. 2015. Up-scaling the Production of Bacteria for Self-healing Concrete Application. PhD Thesis. Ghent University. Faculty of Bioscience Engineering.

F. B. da Silva, N. De Belie, N. Boon, and W. Verstraete. 2015. Production of Non-axenic Ureolytic Spores for Self-healing Concrete Applications. Construction and Building Materials. 93: 1034-1041.

Doi: https://doi.org/10.1016/j.conbuildmat.2015.05.049.

C. Gavimath et al. 2012. Potential Application of Bacteria to Improve the Strength of Cement Concrete. International Journal of Advanced Biotechnology and Research. 3(1): 541-544.

A. A. Hassan, A. B. Suhaimi, Mohd. S. Abdul Rahman, Z. A. Ahmad Razin, S. Shafinaz, and H. A.-T. Wahid Ali. 2018. Numerical Modeling for Crack Self-healing Concrete by Microbial Calcium Carbonate. Construction and Building Materials. 189: 816-824. Doi: https://doi.org/10.1016/j.conbuildmat.2018.08.218.

H. K. Kim, S. J. Park, J. I. Han, and H. K. Lee. 2013. Microbially Mediated Calcium Carbonate Precipitation on Normal and Lightweight Concrete. Construction and Building Materials. 38: 1073-1082.

Doi: https://doi.org/10.1016/j.conbuildmat.2012.07.040.

S. Maheswaran et al. 2014. Strength Improvement Studies Using New Type Wild Strain Bacillus Cereus on Cement Mortar. Current Science. 106(1): 50-57. [Online]. Available: http://www.jstor.org/stable/24099862.

S.-J. Park, Y.-M. Park, W.-Y. Chun, W.-J. Kim, and S.-Y. Ghim. 2010. Calcite-forming Bacteria for Compressive Strength Improvement in Mortar. Journal of Microbiology and Biotechnology. 20(4): 782-788. [Online]. Available: http://europepmc.org/abstract/MED/20467254.

R. Pei, J. Liu, S. Wang, and M. Yang. 2013. Use of Bacterial Cell Walls to Improve the Mechanical Performance of Concrete. Cement and Concrete Composites. 39: 122-130. Doi: https://doi.org/10.1016/j.cemconcomp.2013.03.024.

W. Pungrasmi, J. Intarasoontron, P. Jongvivatsakul, and S. Likitlersuang. 2019. Evaluation of Microencapsulation Techniques for MICP Bacterial Spores Applied in Self-Healing Concrete. Scientific Reports. 9(1): 12484. [Online]. Available: https://doi.org/10.1038/s41598-019-49002-6.

S. K. Ramachandran, V. Ramakrishnan, and S. S. Bang. 2001. Remediation of Concrete using Micro-organisms. ACI Materials Journal-American Concrete Institute. 98(1): 3-9.

R. Siddique, K. Singh, Kunal, M. Singh, V. Corinaldesi, and A. Rajor. 2016. Properties of Bacterial Rice Husk Ash Concrete. Construction and Building Materials. 121: 112-119.

Doi: https://doi.org/10.1016/j.conbuildmat.2016.05.146.

R. Siddique et al. 2016. Influence of Bacteria on Compressive Strength and Permeation Properties of Concrete Made with Cement Baghouse Filter Dust. Construction and Building Materials. 106: 461-469. Doi: https://doi.org/10.1016/j.conbuildmat.2015.12.112.

S. R. Vempada, S. S. P. Reddy, M. S. Rao, and C. Sasikala. 2011. Strength Enhancement of Cement Mortar Using Microorganisms - An Experimental Study. Int J Earth Sci Eng. 4: 933-936.

J. Y. Wang, N. De Belie, and W. Verstraete. 2012. Diatomaceous Earth as a Protective Vehicle for Bacteria Applied for Self-healing Concrete. Journal of Industrial Microbiology & Biotechnology. 39(4): 567-577. Doi: 10.1007/s10295-011-1037-1.

J. Y. Wang, D. Snoeck, S. V. Vlierberghe, W. Verstraete, and N. D. Belie. 2014. Application of Hydrogel Encapsulated Carbonate Precipitating Bacteria for Approaching a Realistic Self-healing in Concrete. Construction and Building Materials. 68: 110-119. Doi: https://doi.org/10.1016/j.conbuildmat.2014.06.018.

J. Wang, J. Dewanckele, V. Cnudde, S. V. Vlierberghe, W. Verstraete, and N. D. Belie. 2014. X-ray Computed Tomography Proof of Bacterial-based Self-healing in Concrete. Cement and Concrete Composites. 53: 289-304. Doi: https://doi.org/10.1016/j.cemconcomp.2014.07.014.

J. Wang et al. 2015. Application of Modified-alginate Encapsulated Carbonate Producing Bacteria in Concrete: A Promising Strategy for Crack Self-healing. Frontiers in Microbiology. 6: 1088. Doi: 10.3389/fmicb.2015.01088.

J. Wang, K. V. Tittelboom, N. D. Belie, and W. Verstraete. 2012. Use of Silica Gel or Polyurethane Immobilized Bacteria for Self-healing Concrete. Construction and Building Materials. 26(1): 532-540. Doi: https://doi.org/10.1016/j.conbuildmat.2011.06.054.

J. Y. Wang, H. Soens, W. Verstraete, and N. D. Belie. 2014. Self-healing Concrete by Use of Microencapsulated Bacterial Spores. Cement and Concrete Research. 56: 139-152. Doi: https://doi.org/10.1016/j.cemconres.2013.11.009.

S. L. Williams, M. J. Kirisits, and R. D. Ferron. 2016. Optimization of Growth Medium for Sporosarcina pasteurii in Bio-based Cement Pastes to Mitigate Delay in Hydration Kinetics. Journal of Industrial Microbiology & Biotechnology. 43(4): 567-575. Doi: 10.1007/s10295-015-1726-2.

M. Wu, X. Hu, Q. Zhang, D. Xue, and Y. Zhao. 2019. Growth Environment Optimization for Inducing Bacterial Mineralization and Its Application in Concrete Healing. Construction and Building Materials. 209: 631-643. Doi: https://doi.org/10.1016/j.conbuildmat.2019.03.181.

J. Xu, Y. Du, Z. Jiang, and A. She. 2015. Effects of Calcium Source on Biochemical Properties of Microbial CaCO3 Precipitation. Frontiers in Microbiology. 6: 1366. Doi: 10.3389/fmicb.2015.01366.

J. Xu and X. Wang. 2018. Self-healing of concrete Cracks by Use of Bacteria-containing Low Alkali Cementitious Material. Construction and Building Materials. 167: 1-14. Doi: https://doi.org/10.1016/j.conbuildmat.2018.02.020.

J. Xu, X. Wang, and B. Wang. 2018. Biochemical Process of Ureolysis-based Microbial CaCO3 Precipitation and Its Application in Self-healing Concrete. Applied Microbiology and Biotechnology. 102(7): 3121-3132. Doi: 10.1007/s00253-018-8779-x.

Y. Ç. Erşan, F. B. D. Silva, N. Boon, W. Verstraete, and N. D. Belie. 2015. Screening of Bacteria and Concrete Compatible Protection Materials. Construction and Building Materials. 88: 196-203. Doi: https://doi.org/10.1016/j.conbuildmat.2015.04.027.

S. Castanier, G. L. Métayer-Levrel, and J.-P. Perthuisot. 2000. Bacterial Roles in the Precipitation of Carbonate Minerals. Microbial Sediments, R. E. Riding and S. M. Awramik, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg. 32-39. Doi: 10.1007/978-3-662-04036-2_5.

A. F. Alshalif, J. M. Irwan, N. Othman, and L. H. Anneza. 2016. Isolation of Sulphate Reduction Bacteria (SRB) to Improve Compress Strength and Water Penetration of Bio-Concrete. MATEC Web of Conferences. 47: 01016. Doi: 10.1051/matecconf/20164701016.

T. Tambunan, M. I. Juki, and N. Othman. 2019. Mechanical Properties of Sulphate Reduction Bacteria on the Durability of Concrete in Chloride Condition. MATEC Web Conf. 258: 01024. Doi: 10.1051/matecconf/201925801024.

K. Vijay, M. Murmu, and S. V. Deo. 2017. Bacteria based Self Healing Concrete – A Review, Construction and Building Materials. 152: 1008-1014. Doi: https://doi.org/10.1016/j.conbuildmat.2017.07.040.

S. Joshi, S. Goyal, A. Mukherjee, and M. S. Reddy. 2017. Microbial Healing of Cracks in Concrete: A Review. Journal of Industrial Microbiology & Biotechnology. 44(11): 1511-1525. Doi: 10.1007/s10295-017-1978-0.

A. Sidiq, R. Gravina, and F. Giustozzi. 2019. Is Concrete Healing Really Efficient? A Review. Construction and Building Materials. 205: 257-273. Doi: https://doi.org/10.1016/j.conbuildmat.2019.02.002.

J. Wang. 2013. Self-healing Concrete by Means of Immobilized Carbonate Precipitating Bacteria. PhD Thesis. Ghent University. Faculty of Engineering and Architecture.

S. Gupta and H. Kua. 2016. Encapsulation Technology and Techniques in Self-Healing Concrete. Journal of Materials in Civil Engineering. 28: 04016165. Doi: 10.1061/(ASCE)MT.1943-5533.0001687.

S. Gupta, S. D. Pang, and H. W. Kua. 2017. Autonomous Healing in Concrete by Bio-based Healing Agents – A Review. Construction and Building Materials. 146: 419-428.

Doi: https://doi.org/10.1016/j.conbuildmat.2017.04.111.

F. B. da Silva, N. Boon, N. Belie, and W. Verstraete. 2015. Industrial Application of Biological Self-healing Concrete: Challenges and Economical Feasibility. Journal of Commercial Biotechnology. 21: 31-38. Doi: 10.5912/jcb662.

H. M. Jonkers and E. Schlangen. 2007. Self-healing of Cracked Concrete: A Bacterial Approach. IA-FraMCoS [internet].[Acesso em: 2017 out 04].

H. M. Jonkers and H. Schlangen. 2021. Crack Repair by Concrete Immobilized Bacteria. Proceedings of the First International Conference on Self Healing Materials. 1-7. Accessed: Jul. 25. [Online]. Available: https://research.tudelft.nl/en/publications/crack-repair-by-concrete-immobilized-bacteria.

H. Jonkers and E. Schlangen. 2008. Development of a Bacteria-based Self Healing Concrete. Tailor Made Concrete Structures. Doi: 10.1201/9781439828410.ch72.

W. De Muynck, D. Debrouwer, N. De Belie, and W. Verstraete. 2008. Bacterial Carbonate Precipitation Improves the Durability of Cementitious Materials. Cement and Concrete Research. 38(7): 1005-1014. Doi: https://doi.org/10.1016/j.cemconres.2008.03.005.

S. Dupraz, M. Parmentier, B. Ménez, and F. Guyot. 2009. Experimental and Numerical Modeling of Bacterially Induced pH Increase and Calcite Precipitation in Saline Aquifers. Chemical Geology. 265(1): 44-53. Doi: https://doi.org/10.1016/j.chemgeo.2009.05.003.

M. Seifan, A. K. Samani, and A. Berenjian. 2016. Bioconcrete: Next Generation of Self-Healing Concrete. Applied Microbiology and Biotechnology. 100(6): 2591-2602. Doi: 10.1007/s00253-016-7316-z.

M. J. Castro-Alonso, L. E. Montañez-Hernandez, M. A. Sanchez-Muñoz, M. R. Macias Franco, R. Narayanasamy, and N. Balagurusamy. 2019. Microbially Induced Calcium Carbonate Precipitation (MICP) and Its Potential in Bioconcrete: Microbiological and Molecular Concepts. Frontiers in Materials. 6: 126. Doi: 10.3389/fmats.2019.00126.

S. Z. Qian, J. Zhou, and E. Schlangen. 2010. Influence of Curing Condition and Precracking Time on the Self-Healing Behavior of Engineered Cementitious Composites. Cement and Concrete Composites. 32(9): 686-693.

Doi:https://doi.org/10.1016/j.cemconcomp.2010.07.015.

Downloads

Published

2022-03-31

Issue

Section

Science and Engineering

How to Cite

RESEARCH PROGRESS ON MICROBIAL SELF-HEALING CONCRETE. (2022). Jurnal Teknologi, 84(3), 25-45. https://doi.org/10.11113/jurnalteknologi.v84.17895