SUCCESSFUL PRESERVATION OF BANANA EMBRYOGENIC CALLUS BY MINIMAL GROWTH AND CRYOPRESERVATION TECHNIQUE

Authors

  • Ika Roostika ᵃIndonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Bogor, 16111, Indonesia ᵈResearch Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency Jl. Raya-Jakarta Km 46, Cibinong, Bogor 16911, Indonesia https://orcid.org/0000-0001-9833-8779
  • Fitri Damayanti Universitas Indraprasta PGRI, Faculty of Math and Science,13760, Jakarta, Indonesia https://orcid.org/0000-0002-2871-9936
  • Witjaksono Witjaksono Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Jl. Raya-Jakarta Km 46, Cibinong, Bogor 16911, Indonesia https://orcid.org/0000-0002-2545-7758

DOI:

https://doi.org/10.11113/jurnalteknologi.v84.18300

Keywords:

Banana embryogenic callus, reduced temperature, ABA, vitrification, cryopreservation

Abstract

This paper reports successful preservation methods by minimal growth and cryopreservation of banana embryogenic callus. The minimal growth and cryopreservation techniques can be applied for medium-term and long-term storage. The embryogenic callus of banana cv Dwarf Parfitt was used as the plant material. Different kind of medium formulations, temperature, gelling agents, and ABA concentrations were tested in minimal growth study. The type of explants, dehydration periods, and pre culture media were tested in cryopreservation study. The result showed that the use of WIC medium was better than BM2G for maintaining embryogenic callus. The application of 0.005 mg L-1 ABA combined with reduced temperature (150C) could preserve the cultures longer than 4 months with high survival rate (95%), high recovery rate (90%), and high number of recovered embryos indicating high embryogenic potential. For cryopreservation study, the best dehydration period was 20 minutes. The combined treatments of 150 g/l sucrose and 2 M glycerol at preculture step was the most suitable treatment for successful cryopreservation with 80% survival rates; and the recovered cultures maintained their somatic embryogenic capacity.

References

Mariska, I., Suwarno. and Damardjati, D. S. 1996. Pengembangan Konservasi In Vitro sebagai Salah Satu Bentuk Pelestarian Plasma Nutfah di dalam Bank Gen. Seminar Penyusunan Konsep Pelestarian Ex Situ Plasma Nutfah Pertanian.

Hu, C. Y. and Wang, P. J. 1983. Meristem, Shoot Tip, and Bud Culture. In D.A. Evans, W.R. Sharp, P.V. Amiroto, and Y. Yamada (Eds.). Handbook of Plant Cell Culture Vol. I. Techniques for Propagation and Breeding. McMilan Publishing, New York. 177-227.

Withers, L. A. 1985. Cryopreservation and Storage of Germplasm. In D. A. Dixon (Ed.). Plant Cell Culture. IRL Press, Washington. 169-190.

Keller, E. R. J., Senula, A., Leunufna, S. and Grube, M. 2006. Slow Growth Storage and Cryopreservation-Tools to Facilitate Germplasm Maintenance of Vegetatively Propagated Crops in Living Plant Collections. International Journal of Refrigeration. 29: 411-417.

DOI: https:/doi.org/10.1016/j.ijrefrig.2005.07.012.

Bessembinder, J. J. E., Staritsky, G. and Zandvoort, E. A. 1993. Long Term in Vitro Storage of Colocasia Esculenta under Minimal Growth Conditions. Plant Cell Tissue and Organ Culture. 33: 121-127.

DOI: https://doi.org/10.1007/BF01983224.

Desbrunais, A. B., Noirot, A. and Charrier, A. 1992. Slow Growth In Vitro Conservation of Coffee (Coffea spp.). Plant Cell Tissue and Organ Culture. 31: 105-110.

DOI: https://doi.org/10.1007/BF00037693.

Bajaj, Y. P. S. 1979. Technology and Prospects of Cryopreservation of Germplasm. Euphytica. 28: 267-285.

DOI: https://doi.org/10.1007/BF00056584.

[8] Bhojwani, S. S. and Razdan, M. K. 1983. Plant Tissue Culture. Theory and Practise. Elsevier. Amsterdam. New York. 502.

Ashmore, S. E. 1997. Status Report on the Development and Application of In Vitro Techniques for the Conservation and Use of Plant Genetic Resources. IPGRI (International Plant Genetic Resources Institute). Rome. Italy. 67.

Leunufna, S. 2004. Improvement of the in vitro Maintenance and Cryopreservation of Yams (Dioscorea spp.). Dissertation Martin-Luther-Universitat Halle-Wittenberg. Berlin. Unpublished. 12.

Leunufna, S. 2007. Cryopreservation Technique for Conservation of Plant Germplasm: Its Possible Use in Indonesia. Journal Agrobiogen. 3(2): 80-88.

DOI: https://doi.org/10.21082/jbio.v3n2.2007.p80-88.

Strosse, H., Schoofs, H., Panis, B., Andre, E., Reyniers, K. and Swennen, R. 2006. Development of Embryogenic Cell Suspensions from Shoot Meristematic Tissue in Bananas and Plantains (Musa spp.). Plant Science. 170: 104-112.

DOI: https:/doi.org/10.1016/j.plantsci.2005.08.007.

Kulkarni, V. M. and Ganapathi, T. R. 2009. A Simple Procedure for Slow Growth Maintenance of Banana (Musa spp.) Embryogenic Cell Suspension Culture at Low Temperature. Current Science. 96(10): 1372-1377.

Panis, B., Piette, B. and Swennen, R. 2005. Droplet Vitrification of Apical Meristems: A Acryopreservation Protocol to All Musaceae. Plant Science. 168: 45-55.

DOI: https:/doi.org/10.1016/j.plantsci.2004.07.022.

Engelmann, F. 2000. Importance of Cryopreservation for the Conservation of Plant Genetic Resources. In: Engelmann F, Takagi H (Eds). Cryopreservation of Tropical Plant Germplasm: Current Research Progress and Application, IPGRI, Rome. 8-20.

Roostika, I. and Mariska, I. 2003. Pemanfaatan Teknik Kriopreservasi dalam Penyimpanan Plasma Nutfah Tanaman. Buletin Plasma Nutfah. 9(2): 10-18.

Murashige, T. and Skoog, F. 1962. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Plant Physiology. 15: 473-497.

DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

Sakai, A., Kobayashi, S. and Oiyama, I. E. 1990. Cryopreservation of Nucellar Cells of Navel Orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by Vitrification. Plant Cell Reports. 9(10): 33-57.

Sakai, P. A., Hirai, D. and Niino, T. 2008. Development of PVS-Based Vitrification and Encapsulation–Vitrification Protocols. In Plant Cryopreservation: A Practical Guide; Springer: Singapore. 33-57.

Cai, X., Wei, H., Liu. C., Ren, X., Thi, L. T. and Jeong, B. R. 2020. Synergistic Effect of NaCl Pretreatment and PVP on Browning Suppression and Callus Induction from Petal Explants of Paeonia lactiflora Pall ‘Festival Maxima’. Plants. 9(346): 1-13.

DOI: https://doi.org/10.3390/plants9030346.

Klimaszewska, K., Bernier-Cardou, M., Cyr, D. R. and Sutton, B. C. S. 2000. Influence of Gelling Agents on Culture Medium Gel Strength, Water Availability, Tissue Water Potential, and Maturation Response in Embryogenic Cultures of Pinus Strobus L. In Vitro Cell. Dev. Biol-Plant. 36: 279-286.

DOI: https://doi.org/10.1007/s11627-000-0051-1.

Hoekstra, F. A., Golovina, E. A., Tetteroo, F. A. A. and Wolkers, W. F. 2001. Induction of Desiccation Tolerance in Plant Somatic Embryos: How Exclusive Is The Protective Role of Sugar? Cryobiology. 43: 140-150.

DOI: http://doi.org/10.1006/cryo.2001.2358.

Choi, Y. E. and Jeong, J. H. 2002. Dormancy Induction of Somatic Embryos of Siberian Ginseng by High Sucrose Concentrations Enhances the Conservation of Hydrated Artificial Seeds and Dehydration Resistance. Plant Cell Rep. 20: 1112–1116.

DOI: https://doi.org/10.1007/s00299-002-0455-y.

Zimmermann, J. L. 1993. Somatic Embryogenesis: A Model for Early Development in Higher Plants. Plant Cell. 5: 1411-1423.

DOI: http://doi.org/10.1105/tpc.5.10.1411.

Rai, M. K., Shekhawat, N. S., Harish, A. K., Gupta, M., Phulwaria, K., Ram. and Jaiswal, U. 2011. The Role of Abscisic Acid in Plant Tissue Culture: A Review of Recent Progress. Plant Cell Tiss Organ Cult. 106: 179-190.

DOI: http://doi.org/10.1007/s11240-011-9923-9.

Panis, B. 2009. Cryopreservation of Musa Germplasm. 2nd Edition. Technical guidelines No. 9. F. Engelmann and E. Benson (Eds.). Bioversity International. Montpellier-France. 48p.

Ishikawa, M., Suzuki, M., Nakamura, T., Kishimoto, T., Robertson, A. J. and Gusta, L. V. 2006. Effect of Growth Phase on Survival of Bromegrass Suspesnsion Cells Following Cryopreservation and Biotic Stresses. Annals of Botanny. 97(3): 453-459.

DOI: https://doi.org/:10.1093/aob/mcj049.

Yoshida, S., Hattanda, Y. and Suyama, T. 1993. Variations in Chilling Sensivity of Suspension Cultures Cell of Mung Bean (Vigna radiata (L.) Wilczek) During the Growth Cycle. Plant Cell Physiology. 34: 673-679.

DOI: https://doi.org/10.1007/BF00029997.

Zhu, G-Y., Geuns, J. M. C., Dussert, S., Swennen, R. and Panis, B. 2006. Change in Sugar, Sterol and Fatty Acid Composition in Banana Meristems Caused by Sucrose-Induced Acclimation and Its Effects on Cryopreservation. Physiologia Plantarum. 128: 80-94.

DOI: https://doi.org/10.1111/j.1399-3054.2006.00713.x.

Gamez-Pastrana, R., Gonzalez-Arnao, M. T. and Martinez-Ocampo, Y. 2011. Thermal Events in Calcium Alginate Beads During Encapsulation Dehydration and Encapsulation-Vitrification Protocols. In: B. Panis and P. Lynch (Eds). Proceedings of The First Symposium on Cryopreservation in Horticultural Species. ISHS Comission Molecular Biology and In Vitro Culture. Belgium. 47-54.

DOI: https://doi.org/10.17660/ActaHortic.2011.908.3

Georget. F., Engelmann, G. F., Domergue, R. and Côte, F. 2009. Morpho-Histological Study of Banana (Musa Spp. Cv. Grande Naine [Aaa]) Cell Suspensions During Cryopreservation and Regeneration. Cryo Letters. 30(6): 398-407.

Downloads

Published

2022-07-26

Issue

Section

Science and Engineering

How to Cite

SUCCESSFUL PRESERVATION OF BANANA EMBRYOGENIC CALLUS BY MINIMAL GROWTH AND CRYOPRESERVATION TECHNIQUE. (2022). Jurnal Teknologi, 84(5), 167-176. https://doi.org/10.11113/jurnalteknologi.v84.18300