THE SIMULATION OF INTERMOLECULAR INTERACTIONS OF CARBOXYLIC AND AMINE GROUPS WITH CALCIUM CARBONATE

Authors

  • Abu Zar Che Azimi Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Pahang, Malaysia
  • Norhayati Abdullah Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Pahang, Malaysia https://orcid.org/0000-0001-5197-4188
  • Fatmawati Adam Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Pahang, Malaysia
  • Zulkafli Hassan Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Pahang, Malaysia
  • Sunarti Abdul Rahman Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Pahang, Malaysia https://orcid.org/0000-0003-0986-5548
  • Mohd Zulhaizan Mohd Noor Setegap Ventures Petroleum Sdn. Bhd., No. 68 & 70 Fraser Business Park, Jalan Metro Pudu 2, 55200 Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.18589

Keywords:

Chelating agent, COMPASS, molecular dynamic simulation, calcium carbonate, radial distribution function

Abstract

Surface facilities including tubing and valves at the oilfield have been plagued by mineral scale deposits, which are constitute of calcium carbonate (CaCO3). Penta-potassium diethylenetriaminepentaacetic acid salt (DTPA-K5) has a higher affinity for the metal cations complexes during the chelation process. The eight complexing sites (five carboxylate and three amines) empower the metal ion interactions. This work investigated the molecular dynamics simulations between the DTPA-K5 with the calcium carbonate, CaCO3 scale. The interaction was performed through molecular dynamic (MD) simulation using condensed phase optimised molecular potentials for atomistic simulation studies (COMPASS) force field and the Ewald summation method in Material Studio. The simulation trajectory files examined the intermolecular interactions for radial distribution function (RDF). The simulation shows strong DTPA-K5 with calcium interactions, which revealed the metal ion complexes contributing to the chelation process through the reactive carboxylic and amine functional groups, which were O7 == Ca at radius, r, 2.25 Å with g(r) of 10.09 and N1 -- Ca at radius, r, 2.25 Å with g(r) 2.51.    

References

Khan, W., Azari, M., Hamza, F., Hadibeik, H., and Ramakrishna, S. 2017. Case Study: Multirate Multizone Production Logging and Testing Provides Real-Time Reservoir Insight for Stimulation Treatment Optimization in Deepwater GOM. SPE Annual Technical Conference and Exhibition. San Antonio, Texas, USA. 9-11 October 2017. 1-15.

DOI: https://doi.org/10.2118/187407-MS.

Olajire, A. A. 2015. A Review of Oilfield Scale Management Technology for Oil and Gas Production. Journal of Petroleum Science and Engineering. 135: 723-737.

DOI: https://doi.org/10.1016/j.petrol.2015.09.011.

Dixon, N. J. 2012. Handbook of Green Chemistry. First published. Wiley‐VCH Verlag GmbH & Co. KGaA.

DOI: https://doi.org/10.1002/9783527628698.hgc104.

Li, N., He, D., Zhao, L., and Liu, P. 2016. An Alkaline Barium and Strontium-Sulfate Scale Dissolver. Chemistry and Technology of Fuels and Oils. 52: 141-148.

DOI: https://doi.org/10.1007/s10553-016-0684-3.

Hassan, A., Mahmoud, M., Bageri, B. S., Aljawad, M. S., Kamal, M. S., Barri, A. A., and Hussein, I. A. 2020. Applications of Chelating Agents in the Upstream Oil and Gas Industry: A Review. Energy & Fuels. 34(12): 15593-15613.

DOI: https://doi.org/10.1021/acs.energyfuels.0c03279.

Wang, K. S., Resch, R., Dunn, K., Shuler, P., Tang, Y., Koel, B. E., and Fu Yen, T. 1999. Dissolution of the Barite (001) Surface by the Chelating Agent DTPA as Studied with Non-Contact Atomic Force Microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 160(3): 217-227.

DOI: https://doi.org/10.1016/S0927-7757(99)00183-1.

Nasr-El-Din, H. A., Al-Mutairi, S. H., Al-Hajji, H. H., and Lynn, J. D. 2004. Evaluation of a New Barite Dissolver: Lab Studies. SPE International Symposium and Exhibition on Formation Damage Control. Lafayette, Louisiana. 18-20 February 2004. 1-11.

DOI: https://doi.org/10.2118/86501-MS.

Gamal, H., Al-Afnan, S., Elkatatny, S., and Bahgat, M. 2021. Barium Sulfate Scale Removal at Low-Temperature. Geofluids. 2021: 1-12.

DOI: https://doi.org/10.1155/2021/5527818.

Abib, G. A. P., Cruz, G. F. D., Vaz Junior, A. S. L. 2018. Study of Barium Sulfate Dissolution by Scale Dissolver Based on Solutions of DTPA. Anais da Academia Brasileira de Ciências. (3): 3185-3196.

DOI: https://doi.org/10.1590/0001-3765201820170728.

Khaled, A., Mohamed, M., Salaheldin, E., and Patil, S. 2019. Effect of Calcium Carbonate on Barite Solubility Using a Chelating Agent and Converter. SPE International Conference on Oilfield Chemistry, Galveston, Texas, USA, April 2019. 1-10.

DOI: https://doi.org/10.2118/193566-MS.

Sulaiman, M. H., Adam, F., Yaacob, Z., Sujak, M. Z., and Mohd Noor, M. Z. 2020. Intermolecular Interaction of Carboxylic Group with Calcium Ions and Dissolution of Solid Scales in Bmim-PF6 and Tba-NfO ionic Liquid Solution. Malaysian Journal of Microscopy. 16(1): 205-216.

Fredd, C. N and Fogler, H. S. 1997. Chelating Agents as Effective Matrix Stimulation Fluids for Carbonate Formations. SPE International Symposium on Oilfield Chemistry. Houston, Texas, USA, 18-21 February 1997.

DOI: https://doi.org/10.2118/37212-MS.

Almubarak, T., Ng, J. H., and Nasr-El-Din, H. 2017. Chelating Agents in Productivity Enhancement: A Review. SPE Oklahoma City Oil and Gas Symposium. Oklahoma City. USA. 27-31 March 2017.

DOI: https://doi.org/10.2118/185097-MS.

Ramanathan, R., and Nasr-El-Din, H. 2019. Evaluation of Chelating Agents for Iron Sulfide FeS Scale Removal. SPE Abu Dhabi International Petroleum Exhibition and Conference. Abu Dhabi, UAE. 11-14 November 2019.

DOI: https://doi.org/10.2118/197891-MS.

Sulaiman, M. H., Adam, F., Yaacob, Z., and Mohd Noor, M.Z. 2020. Synthesis of Ionic Salt for Calcite and Barite Solid Scale Dissolution. IOP Conference Series: Materials Science and Engineering. 736: 1-7.

Sulaiman, M. H., Adam, F., Yaacob, Z., Mohd Noor, M. Z., and Abdullah, N. 2022. Evaluation of Carboxylic Acid and Amine Groups with CaCO3, FeS and BaSO4: Molecular Dynamic Simulations and Experimental Study. Arabian Journal for Science and Engineering.

DOI: https://doi.org/10.1007/s13369-022-06647-2.

Adam, F., Abu Bakar, S. H., Mohd Yusoff, M., and Tajuddin, S. N. 2014. Molecular Dynamic Simulation of the Patchouli Oil Extraction Process. Journal of Chemical & Engineering Data. 59(2): 183-188.

DOI: https://doi.org/10.1021/je3013292.

Abdul Mudalip, S. K., Adam, F., and Abu Bakar, M. R. 2019. Evaluation of the Intermolecular Interactions and Polymorphism of Mefenamic Acid Crystals in N,N-Dimethyl Formamide Solution: A Molecular Dynamics Simulation and Experimental Study. Comptes Rendus Chimie. 22(11-12): 771-778.

DOI: https://doi.org/10.1016/j.crci.2019.08.005.

Van Gunsteren, W. F., and Berendsen, H. J. C. 1990. Computer Simulation of Molecular Dynamics: Methodology, Applications, and Perspectives in Chemistry. Angewandte Chemie International Edition in English. 29(9): 992-1023.

DOI: https://doi.org/10.1002/anie.199009921.

Rigby, D. 2004. Fluid Density Predictions using the COMPASS Force Field. Fluid Phase Equilibria. 217(1): 77-87.

DOI: https://doi.org/10.1016/j.fluid.2003.08.019.

Sun, H. 1998. COMPASS: An ab Initio Force-Field Optimised for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds. The Journal of Physical Chemistry B. 102(38): 7338-7364.

DOI: https://doi.org/10.1021/jp980939v.

Sun, H., Ren, P., and Fried, J. R. 1998. The COMPASS Force Field: Parameterisation and Validation for Phosphazenes. Computational and Theoretical Polymer Science. 8(1-2): 229-246.

DOI: https://doi.org/10.1016/S1089-3156(98)00042-7.

Yang, X., Feng, Y., Jin, J., Liu, Y., and Cao, B. 2019. Molecular Dynamics Simulation and Theoretical Study on Heat Capacities of Supercritical H2O/CO2 Mixtures. Journal of Molecular Liquids. 299: 1-10.

DOI: https://doi.org/10.1016/j.molliq.2019.112133.

Yu, X., Wu, Y., Wang, J., and Ulrich, J. 2018. Experimental Assessment and Modeling of the Solubility of Malonic Acid in Different Solvents. Chemical Engineering and Technology. 41(6): 1098-1107.

DOI: https://doi.org/10.1002/ceat.201700227.

Leach, A. R. 2001. Computer Simulation Methods. Molecular Modelling: Principles and Applications. Second Edition. Prentice Hall.

Hamad, S., Moon, C., A. Catlow, C. R., T. Hulme, A., and L. Price, S. 2006. Kinetic Insights into the Role of the Solvent in the Polymorphism of 5-Fluorouracil from Molecular Dynamics Simulations. Journal of Physical Chemistry B. 110(7): 3323-3329.

DOI: https://doi.org/10.1021/jp055982e.

Terban, M. W., and Billinge, S. J. L. 2022. Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chemical Reviews. 122(1): 1208-1272.

DOI: https://doi.org/10.1021/acs.chemrev.1c00237.

Anwar, J., & Boateng, P. K. 1998. Computer Simulation of Crystallization from Solution. Journal of the American Chemical Society. 120(37): 9600-9604.

DOI: https://doi.org/10.1021/JA972750N.

Sandoval, A. A., Sandoval, M. W., Lin, E., and Cheng, K. L. 1969. Hydrogen Bonding in Some Polyaminocarboxylic Acids. Journal of Magnetic Resonance. 3(2): 258-268.

DOI: https://doi.org/10.1016/0022-2364(70)90052-1.

Ladd, M. F. C., Povey, D. C., and Stace, B. C. 1974. Crystallographic and Spectroscopic Studies on Ethylenediaminetetraacetic Acid (edta) III. Crystal and Molecular Structure of α-edta and Infrared Studies on α- and β-edta. Journal of Crystal and Molecular Structure. 4: 313-325.

DOI: https://doi.org/10.1007/BF01636045.

Kowacz, M., Putnis, C. V., and Putnis, A. 2009. The Control of Solution Composition on Ligand-Promoted Dissolution: DTPA−Barite Interactions. Crystal Growth & Design. 9(12): 5266-5272.

DOI: https://doi.org/10.1021/cg9007894.

Kamal, M. S., Hussein, I., Mahmoud, M., Sultan, A. S., and Saad, M. A. S. 2018. Oilfield Scale Formation and Chemical Removal: A Review. Journal of Petroleum Science and Engineering. 171: 127-139.

DOI: https://doi.org/10.1016/j.petrol.2018.07.037.

Luo, Z., Zhang, N., Wang, C., Wu, L., Liu, P., and Ji, H. 2020. A Chelating Agent System for the Removal of Barium Sulfate Scale. Journal of Petroleum Exploration and Production Technology. 10: 3069-3079.

DOI: https://doi.org/10.1007/s13202-020-00886-5.

Hassan, A., Mahmoud, M., Bageri, B. S., Aljawad, M. S., Kamal, M. S., Barri, A. A., and Hussein, I. A. 2020. Applications of Chelating Agents in the Upstream Oil and Gas Industry: A Review. Energy & Fuels. 34(12): 15593-15613.

DOI: https://doi.org/10.1021/acs.energyfuels.0c03279.

Buijs, W., Hussein, I. A., Mahmoud, M., Onawole, A. T., Saad, M. A., and Berdiyorov, G. R. 2018. Molecular Modeling Study toward Development of H2S-Free Removal of Iron Sulfide Scale from Oil and Gas Wells. Industrial & Engineering Chemistry Research. 57(31): 10095-10104.

DOI: https://doi.org/10.1021/acs.iecr.8b01928.

Mahmoud, M., Hussein, I. A., Sultan, A., Saad, M. A., Buijs, W., and Vlugt, T. J. H. 2018. Development of Efficient Formulation for the Removal of Iron Sulphide Scale in Sour Production Wells. The Canadian Journal of Chemical Engineering. 96(12): 2526-2533.

DOI: https://doi.org/10.1002/cjce.23241.

Bedolla, P. O., Feldbauer, G., Wolloch, M., Eder, S. J., Dörr, N., Mohn, P., Redinger, J., and Vernes, A. 2014. Effects of van der Waals Interactions in the Adsorption of Isooctane and Ethanol on Fe(100) Surfaces. The Journal of Physical Chemistry C. 118(31): 17608-17615

DOI: https://doi.org/10.1021/jp503829c.

Hermann, J., Jr, R. A. D., and Tkatchenko, A. 2017. First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications. Chemical Reviews. 117(6): 4714-4758

DOI: https://doi.org/10.1021/acs.chemrev.6b00446.

Onawole, A. T., Hussein, I. A., Saad, M. A., Mahmoud, M., Ahmed, M. E. M., and Nimir, H. I. 2019. Effect of pH on Acidic and Basic Chelating Agents Used in The Removal of Iron Sulfide Scales: A Computational Study. 178: 649-654.

DOI: https://doi.org/10.1016/j.petrol.2019.03.075.

Gerig, J. T., Singh, P., Levy, L. A., and London, R. E. 1987. Calcium Complexation with a Highly Calcium Selective Chelator: Crystal Structure of Ca(CaFBAPTA)·5H2O. Journal of Inorganic Biochemistry. 31(2): 113-121.

DOI: https://doi.org/10.1016/0162-0134(87)80056-9.

Mudalip, S. K., Abu Bakar, M. R., Jamal, P., and Adam F. 2013. Solubility and Dissolution Thermodynamic Data of Mefenamic Acid Crystals in Different Classes of Organic Solvents. Journal of Chemical & Engineering Data. 58(12): 3447-3452.

DOI: https://doi.org/10.1021/je400714f.

Downloads

Published

2022-12-02

How to Cite

Che Azimi, A. Z. ., Abdullah, N. ., Adam, F. ., Hassan, Z. ., Abdul Rahman, S. ., & Mohd Noor, M. Z. . (2022). THE SIMULATION OF INTERMOLECULAR INTERACTIONS OF CARBOXYLIC AND AMINE GROUPS WITH CALCIUM CARBONATE. Jurnal Teknologi, 85(1), 91-98. https://doi.org/10.11113/jurnalteknologi.v85.18589

Issue

Section

Science and Engineering