FATIGUE BEHAVIOUR OF TEMPERED AND ISOTHERMAL HEAT TREATED AISI 5160 LEAF SPRING STEEL

Authors

  • Jamal Nayief Sultan Northern University, Technical College of Engineering, Mosul, Iraq Technical
  • Emad Toma Karash Northern Technical University, Technical Institute Mosul, Mosul, Iraq
  • Majid Kalel Najim Northern University, Technical College of Engineering, Mosul, Iraq Technical

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.18640

Keywords:

Fatigue, tempering heat treatment, Isothermal heat treatments, Oil quenching, Bainite, Retained austenite

Abstract

The oil quench and temper technique have a lot of benefits for heavy duty spring manufacture since it may expose the best balance of toughness and ductility, as well as increase fatigue life. The current study looked at the fatigue behavior of tempered AISI 5160 leaf spring steel samples at tempering temperatures of 400, 450, 500, 550, and 600 °C, as well as isothermally heat- treated steel samples at 830 °C. All leaf spring steel samples that had undergone thermal tempering and isothermal heat treatment were then tested up to fracture utilizing rotational fatigue test equipment under the effect of various stress levels. All steel samples subjected to tempering heat treatments of 400°C to 600°C showed a decrease in hardness ratings. The Rockwell hardness ratings of the steel samples that treated to isothermal heat treatment increased significantly. Experimental fatigue testing revealed that the values of fatigue resistance for steel samples tempered at (400 and 450) °C temperatures dropped by a small amount. The fatigue resistance values for steel specimens tempered at 500 °C to 600 °C temperatures decreased more than the values for steel samples tempered at 500 to 600 °C temperatures. A fatigue resistance of steel samples that were treated to isothermal heat treatments, on the other hand, increased. Steel samples that were isothermally heat-treated at 830 °C and then chilled in a salt brine solution, on the other hand, showed an increase in fatigue resistance

References

Zhi Tong, Guijuan Zhou, Wenyue Zheng, Haining Zhang, Hongyu Zhou, and Xiaoran Sun. 2022. Effects of Heat Treatment on the Microstructure and Mechanical Properties of a Novel H-Grade Sucker Rod Steel. Journal of Metals. 12(294): 1-10.

Doi.org/10.3390/met12020294.

Rushikesh, S. Pande, Dhanaji, R. Jadhav, C. S. Kodarkar. 2017. Fatigue and Design Analysis of Multi Leaf Spring. International Journal of Innovative Research in Science, Engineering and Technology. 6(5): 9061-9069.

Doi:10.15680/IJIRSET.2017.0605104.

B. Žužek, M. Sedlaček, B. Podgornik. 2015. Effect of Segregations on Mechanical Properties and Crack Propagation in Spring Steel. Frattura ed Integrità Strutturale. 34: 160-168.

Doi: 10.3221/IGF-ESIS.34.17.

Danilo Borges Villarino de Castro, Jaime Milan Ventura, Cassius Olivio Figueiredo Terra Ruckert, Dirceu Spinelli., Waldek Wladimir Bose Filho. 2010. Influence of Phosphorus Content and Quenching/Tempering Temperatures on Fracture Toughness and Fatigue Life of SAE 5160 Steel. J. Materials Research. 13(4): 445-455.

Doi.org/10.1590/S1516-14392010000400005.

A. Reguly, T. R. strohaecker, G. krauss, and D. K.matlock. 2004. Quench Embrittlement of Hardened 5160 Steel as a Function of Austenitizing Temperature. J. Metallurgical and Materials Transactions. 35a: 153-162.

Doi: 10.1007/s11661-004-0118-4.

R. D. López-Garcíaa, F. A. García-Pastorb, A. Maldonado-Reyesa, M. A. Jimémez-Gómeza, J. A. Rodríguez-García. 2019. Analysis of the Effect of Immersion Rate on the Distortion and Residual Stresses in Quenched SAE5160 Steel using FEM. J. of Materials Research and Technology. No.921.

Doi: 10.1016/j.jmrt.2019.09.024.

Oskari Haiko, Sakari Pallaspuro, Tommi Liimatainen. 2019. The Effect of Tempering on the Microstructure and Mechanical Properties of a Novel 0.4C Press-Hardening Steel. Appl. Sci. 9(4231): 1-16.

Doi.org/10.3390/app9204231.

Ruhi Yeşildal. 2018. The Effect of Heat Treatments on the Fatigue Strength of H13 Hot Work Tool Steel Distributed under a Creative Commons CC BY lLicense. 1-13.

Doi:10.20944/preprints201812.0226.v1.

Murathan Soner, Metin Tanoglu, Nilay Guven, Mustafa Karaagac, Rasim Akyali, Ozay Aksoy, Tolga Erdogus, and Ahmet Kanbolat. 2018. Design and Fatigue Life Comparison of Steel and Composite Leaf Spring. SAE Technical Paper. Izmir Institute of Technology.

Doi: 10.4271/2012-01-0944.

Rania Adwan, Ekhlas Edan Kader, Lutfi Yousuf Zedan. 2021. Experimental Analysis of Composite Materials Leaf Spring Used in Automotive. J. Diyala Journal of Engineering Sciences. 14(4).

Doi: 10.4028/www.scientific.net/AMM.663.83.

Mouleeswaran Senthil Kumar, Sabapathy Vijayarangan. 2007. Analytical and Experimental Studies on Fatigue Life Prediction of Steel and Composite Multi-leaf Spring for Light Passenger Vehicles Using Life Data Analysis. J. Materials Science. 13(2): 141-146.

Doi.org/10.24237/djes.2021.14403.

Xue Han, Gary Barber, Zhenpu Zhang, Bingxu Wang, Jian Zhu, Jing Shi, Xichen Sun. 2018. Austenite-Bainite Transformation Kinetics in Austempered AISI 5160 Steel. European Scientific Journal. 14(12).

Doi: 10.19044/esj.2018.v14n12p1.

Anton Sudiyanto, Eko Pujiyulianto. 2021. The Effect of Varying Quenching Media on Cooling Time and Microstructures of Leaf Spring Steel AISI 5160. AIP Conference Proceedings. 2363(1).

Doi.org/10.1063/5.0066030.

Bojan Podgornik, Vojteh Leskovšek, Matjaz Godec, Bojan Senčič. 2014. Microstructure Refinement and Its Effect on Properties of Spring Steel. J. Materials Science and Engineering. 599: 81-86.

Doi: 10.1016/j.msea.2014.01.054.

Mustafa Karaagac, Murathan Soner, Alper Togay, Aylin Keskin, Selcuk Yildiz, Erdoğan Tekin, Ahmet Kanbolat. 2018. Decarburization Effects on Fatigue Behavior of Leaf Spring Material. International by Big Ten Academic Alliance.

Doi: https://doi.org/10.4271/2013-01-0392.

Claudia, E. Flores De la Rosa, M. Herrera-Trejo, Manuel Castro-Roman, Eddy Alfaro. 2016. Effect of Decarburization on the Residual Stresses Produced by Shot Peening in Automotive Leaf Springs. Journal of Materials Engineering and Performance. 25(7).

Doi: 10.1007/s11665-016-2132-2.

Dejun, Li, D. Anghelina,D. Burzic, J. Zamberger, R. Kienreich, H. Schifferl, W. Krieger, E. Kozeschnik. 2009. Investigation of Decarburization in Spring Steel Production Process – Part I: Experiments. J. Materials Technology. 80(4): 298-303.

Doi.org/10.2374/SRI08SP069.

Sheng-Guan Qu, Ya-Long Zhang, Fu-Qiang Lai and Xiao-Qiang Li. 2018. Effect of Tempering Temperatures on Tensile Properties and Rotary Bending Fatigue Behaviors of 17Cr2Ni2MoVNb Steel. Metals. 8(507): 1-11.

Doi: 10.3390/met8070507.

Li, Y. Q. 2018. Effect of Tempering Temperatures on Tensile Properties and Rotary Bending Fatigue Behaviors of 17Cr2Ni2MoVNb Steel. Metals. 8(07): 1-11.

Doi.org/10.3390/met8070507.

Qingyan Zhu, Peng Zhang, Xingdong Peng, Ling Yan and Guanglong Li. 2021. Fatigue Crack Growth Behavior and Fracture Toughness of EH36 TMCP Steel. Materials (Basel). 14(21): 662.

Doi: 10.3390/ma14216621.

Lara, A., Picas, I. and Casellas, D. 2013. Effect of the Cutting Process on the Fatigue Behaviour of Press Hardened and High Strength Dual Phase Steels. J. Mater. Process Technol. 213: 1908-19.

Doi.org/10.1016/j.jmatprotec.2013.05.003.

Sergi Pararedaa, Daniel Casellasa, David Frómeta, Marc Martínez, Antoni Lara, Anna Barrero, Jaume Pujante. 2020. Fatigue Resistance of Press Hardened 22MnB5 Steels. International Journal of Fatigue. 130(105262): 1-10.

Doi.org/10.1016/j.ijfatigue.2019.105262.

Pessard, E., Abrivard, B., Morel, F., Abroug, F. and Delhaye, P. 2014. The Effect of Quenching and Defects Size on the HCF Behaviour of Boron Steel. International Journal of Fatigue. 68: 80-89.

Doi.org/10.1016/j.ijfatigue.2014.06.002.

Qingyan ZhuPeng, Zhang Xingdong, Guanglong Li. 2021. Fatigue Crack Growth Behavior and Fracture Toughness of EH36 TMCP Steel. Materials. 14(21): 6621.

Doi: 10.3390/ma14216621.

Lara, A., Roca, M., Parareda, S., Cuadrado, N., Calvo, J. and Casellas, D. 2018. Effect of Sandblasting on Low and High-Cycle Fatigue Behaviour after Mechanical Cutting of a Twinning-Induced Plasticity Steel. MATEC Web of Conferences. 165: 18002.

Doi.org/10.1051/matecconf/201816518002.

Emad Toma Karash. 2014. The Effect of Stress Ratio on Fatigue Threshold of Crak in Mode (I). Al-Qadisiyah Journal of Engineering Sciences. 7(4): 187-200.

Sergi Parareda, Antoni Lara, Henrik Sieurin, Héber D´Armas, Daniel Casellas. 2018. Increasing Fatigue Performance in AHSS Thick Sheet by Surface Treatments. MATEC Web of Conferences. 165(22015): 1-6.

Doi.org/10.1051/matecconf/201816522015.

A. A. Zainulabdeen, N. Y. Mahmood and J. H. Mohmmed. 2018. The Effect of Polymeric Quenching Media on Mechanical Properties of Medium Carbon Steel. IOP Conf. Series: Materials Science and Engineering. 454: 1-8.

Doi: 10.1088/1757-899X/454/1/012053.

Ławrynowicz, Z. 2016. Kinetics of the Bainite Transformation in Austempered Ductile Iron ADI. Advances in Materials Science. 16(2): 47-56.

Doi:10.1515/adms-2016-0008.

Jie Zhang, She-ming Jiang, Qi-fu Zhang, Chang-sheng Liu. 2016. Effect of Temperature on Microstructure and Formability of Al-10 mass% Si Coatings. International Journal of Iron and Steel Research. 23(3): 270-275.

Doi.org/10.1016/S1006-706X(16)30044-9.

Weikang Lian, Jinchang Duan, Qianting Wang, Junhao Dong, Qiong Liu, Chen Lin and Yisheng Zhang. 2021. Influence of Multi-Step Heating Methods on Properties of Al–Si Coating Boron Steel Sheet. Coatings. 11: 164.

Doi.org/10.3390/coatings11020164.

Fares, M. L., Athmani M., Khelfaoui, Y., et al. 2012. An Investigation into the Effects of Conventional Heat Treatments on Mechanical Characteristics of New Hot Working Tool Steel. Material Science Engineering. 28: 012-042.

Doi: 10.1088/1757-899X/28/1/012042.

M. Hawryluk, Andrzej Dolny, Stanisław Mroziński. 2017. Low Cycle Fatigue Studies of WCLV Steel (1.2344) used for Forging Tools to Work at Higher Temperatures. Archives of Civil and Mechanical Engineering. 18(2): 465-478.

Doi: 10.1016/j.acme.2017.08.002.

Jamal Nayief Sultan, Emad Toma Karash, Tariq Khalid Abdulrazak, Mohammad Takey Elias Kassim. 2022. The Effect of Multi-Walled Carbon Nanotubes Additives on the Tribological Properties of Austempered AISI 4340. Journal Européen des Systèmes Automatisés. 55(3): 387-396.

Doi: 10.18280/jesa.550311.

Jamal Nayief Sultan. 2013. Effect of Austenizing and Tempering Heat Treatment Temperatures on the Fatigue Resistance of Carburized 16MnCr 5 (ASTM 5117) Steel. Tikrit Journal of Engineering. 20(4): 1-10.

Doi: 10.25130/tjes.20.4.01.

Moayad Abdullah Mohammad, Jamal Nayief Sultan, Suhaila Younis Hussain, George Matti Hanosh. 2014. Effect of Nickel Coating on Fatigue Resistance of Carburized AISI 301 Stainless Steel. Engineering and Technology Journal. 32(1): 13-23.

J. Zhu, C. Yang, Y. Jiang, X. Xu, M. Ou. 2016. Influence of Tempering Temperature on Microstructure and Properties of 60Si2CrVAT Spring Steel. Heat Treatment of Metals Journal. 2016(03): 54-57.

DOI: 10.1016/j.acme.2017.08.002.

Q. Xu, Weijun Hui, Beijing Jiao Tong, J. Long, M. Liang, H. Chen. 2012. Effect of Tempering Temperature on High-Cycle Fatigue Properties of 60Si2MnA Spring Steel. Jinshu Rechuli/Heat Treatment of Metals. 37(8): 12-17.

Downloads

Published

2023-04-19

Issue

Section

Science and Engineering

How to Cite

FATIGUE BEHAVIOUR OF TEMPERED AND ISOTHERMAL HEAT TREATED AISI 5160 LEAF SPRING STEEL. (2023). Jurnal Teknologi, 85(3), 15-24. https://doi.org/10.11113/jurnalteknologi.v85.18640