QUANTITATIVE ANALYSIS OF ELECTRICAL CURRENT EFFECT ON MAGNETIC RESONANCE IMAGE TISSUE INTENSITY

Authors

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.18871

Keywords:

Magnetic resonance imaging, Tissue image intensity, T1-weighted image, T2-weighted images, MREIT

Abstract

Recent studies in magnetic resonance imaging (MRI) aim to improve image quality while reducing scan time. Electrical current injection in the form of magnetic resonance electrical impedance tomography (MREIT) is believed to be affecting image quality and scan time thus can improve the possibility of becoming a non-chemical contrast agent in MRI. This study will observe and analyze the effect of electrical current injection on a phantom object to determine whether there is a different tissue image intensity.  A thigh of lamb was used as a biological tissue phantom. The scan was performed on both T1and T2-weighted without and with an electrical current injection of 0.5 mA Electrical current injection decreased mean of tissue image intensity on T1-weighted images on both muscle (1759 vs 794) and bone (2752 vs 1550) (p<0.05). On the other hand, the electrical current increased mean of tissue image intensity on T2-weighted images on both muscle (303 vs 897) and bone (579 vs 1499) (p<0.05). There is also a difference in tissue image intensity on both T1 and T2-weighted images with and without electrical current injection on bone and muscle. The implication of this difference in image quality is a subject for further study.

Author Biography

  • Utriweni Mukhayyar, Statistics Research Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia

    Department of Statistic

References

Rinck, P. 2018. Magnetic Resonance in Medicine. 12th ed. Norderstedt, Germany: Books on Demand.

Daniel Harris Lynn McNicoll, M. D., Gary Epstein-Lubow, M. D., and Kali, S. Thomas, B. A. 2019. Value of MRI in Medicine: More than Just Another Test? Physiology & Behavior. 176(1): 139-148. https://doi.org/10.1002/jmri.26211.

Khan, S. U., Ullah, N., Ahmed, I., Ahmad, I., & Mahsud, M. I. 2018. MRI Imaging, Comparison of MRI with other Modalities, Noise in MRI Images and Machine Learning Techniques for Noise Removal: A Review. Current Medical Imaging Formerly Current Medical Imaging Reviews. 15(3): 243–254. Doi: https://doi.org/10.2174/1573405614666180726124952.

Xiao, Y. D., R. Paudel., J. Liu., C. Ma., Z. Zhang., and K. Zhou. 2016. MRI Contrasts Agents: Classification and Application (Review). International Journal of Molecular Medicine. 38: 1319-1326. Doi: https://doi.org/10.3892/ijmm.2016.2744.

Ibrahim, M. A., Hazhirkarzar, B., Dublin, A. B. 2022. Gadolinium Magnetic Resonance Imaging. StatPearls. [Internet]. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482487/.

Delgado, A. F., Westen, D. Van, Nilsson, M., Knutsson, L., & Sundgren, P. C. 2019. Diagnostic Value of Alternative Techniques to Gadolinium-Based Contrast Agents in MR Neuroimaging — A Comprehensive Overview. Insights into Imaging. 10(84): 1-15. Doi: https://doi.org/10.1186/s13244-019-0771-1.

Andrade, K. N., G. Arizaga., and J. Mayorga. 2020. Effect of Gd and Dy Concentrations in Layered Double Hydroxides on Contrast in Magnetic Reconance Imaging. Multidisciplinary Digital Publishing Institute. 8(4): 462. Doi: https://doi.org/10.3390/pr8040462.

Kawahara, D., & Nagata, Y. 2021. T1-Weighted and T2-Weighted MRI Image Synthesis with Convolutional Generative Adversarial Networks. Reports of Practical Oncology and Radiotherapy. 26(1): 1-2. Doi: https://doi.org/10.5603/RPOR.a2021.0005.

ouhsina, N., Decante, C., Hardel, J. B., Rouleau, D., Abadie, J., Hamel, A., Visage, C. Le, Lesoeur, J., & Region-of-interest, R. O. I. 2022. Comparison of MRI T1, T2, and T2 Mapping with Histology for Assessment of Intervertebral Disc Degeneration in an Ovine Model. Scientific Reports. 1-12. Doi: https://doi.org/10.1038/s41598-022-09348-w.

Rogosnitzky, M., and S. Branch. 2016. Gadolinium-Based Contrast Agent Toxicity: A Review of Known and Proposed Mechanism. National Library of Medicine. 29(3): 365-76. Doi: 10.1007/s10534-016-9931-7.

Gatta, G., Di Grezia, G., Cuccurullo, V., Sardu, C., Iovino, F., Comune, R., Ruggiero, A., Chirico, M., La Forgia, D., Fanizzi, A., Massafra, R., Belfiore, M. P., Falco, G., Reginelli, A., Brunese, L., Grassi, R., Cappabianca, S., & Viola, L. 2022. MRI in Pregnancy and Precision Medicine: A Review from Literature. Journal of Personalized Medicine. 12(1). Doi: https://doi.org/10.3390/jpm12010009.

Jain, C. 2019. ACOG Committee Opinion Guidelines for Diagnostic Imaging during Pregnancy and Lactation. Obstetrics and Gynecology. 133(1): 186. Doi: https://doi.org/10.1097/AOG.0000000000003049.

Guo, B.J., Z. Yang., and L. Zhang. 2018. Gadolinium Deposition in Brain: Current Scientific Evidence and Future Perspectives. National Library of Medicine. 11: 335.

Ramalho, J., M. Ramalho., M. Jay., L. Burke., and R. Semelka. 2016. Gadolinium Toxicity and Treatment. Magnetic Resonance Imaging. 34(1): 1394-1398. Doi: https://doi.org/10.1016/j.mri.2016.09.005.

Kanda, T., K. Ishii., H. Kawaguch, K. Kitajima, and D. Takenaka. 2014. High Signal Intensity in the Dentate Nucleus and Globus Pallidus on Unenhanced T1-weighted MR Images: Relationship with Increasing Cumulative Dose of a Gadolinium-based Contrast Material. Radiology. 270(3): 834-841. Doi: 10.1148/radiol.13131669.

Mercantepe, T., Tumakaya, L., Celiker, F, B., Suzan, Z, T., Cinar, S., Akyildiz, K., Mercantepe, F., Yilmaz, A. 2018. Effects of Gadolinium-based MRI Contrast Agents on Liver Tissue. J Magn Reson Imaging. 48(5): 1367-1374. Doi: https://doi.org/10.1002/jmri.26031.

Klein, A, D., Oyarzun, J, E., Cortez, C., Zanlungo, S. 2018. Gadolinium Chloride Rescues Niemann-Pick Type C Liver Damage. Int J Mol Sci. 19(11): 3599. Doi: 10.3390/ijms19113599.

Joy, M., G. Scott., and M. Henkelman, 1989. M. In Vivo Detection of Applied Electric Currents by Magnetic Resonance Imaging. Magnetic Resonance Imaging. 7(1): 89-94. Doi: 10.1016/0730-725x(89)90328-7.

Grimnes, S. and O. Martinsen. 2015. Bioimpedance and Bioelectricity Basics. London, U.K: Academic Press.

Kim, H. J., Y. Kim., A. Minhas., W. Jeong., E. Woo., J. Seo., and O. Kwon. 2009. In Vivo High-Resolution Conductivity Imaging of the Human Leg Using MREIT: The First Human Experiment. IEEE Transactions on Medical Imaging. 28(11): 1681-1687. Doi: 10.1109/TMI.2009.2018112.

Eroglu, H. H., Sadighi, M., & Eyuboglu, B. M. 2018. Induced Current Magnetic Resonance Electrical Conductivity Imaging with Oscillating Gradients. IEEE transactions on Medical Imaging. 37(7): 1606-1617. Doi: https://doi.org/10.1109/TMI.2018.2795718.

Dominik Garmatter and Bastian Harrach. 2018. Magnetic Resonance Electrical Impedance Tomography (MREIT): Convergence and Reduced Basis Approach. SIAM J. Img. Sci. 11(1): 863-887. Doi: https://doi.org/10.1137/17M1155958.

Oh, S., J. Han., S. Lee, M. Cho, B. Lee., and E. Woo. 2003. Electrical Conductivity Imaging by Magnetic Resonance Electrical Impedance Tomography (MREIT). Magnetic Resonance in Medicine. 50(4): 875-878. Doi: https://doi.org/10.1002/mrm.10588.

Ain, K., D. Kurniadi, M. Ulum, L. Choridah, U. Mukhayyar, A. Garnadi, N. Setyawan, and B. Ariwanto. 2022. Development of Multi Frequency Electrical Impedance Tomography for Rectangular Geometry by Finite Volume Methods. Jurnal Teknologi. 84(2): 9-15. Doi: https://doi.org/10.11113/jurnalteknologi.v84.16936.

Janssen, I., S. Heymsfield., and R. Baumgartner. 2000. Estimation of Skeletal Muscle Mass by Bioelectrical Impedance Analysis. National Library of Medicine. 89(2): 465-71. Doi: 10.1152/jappl.2000.89.2.465.

Lukaski, H. C., P. Johnson, W. Bolonchuk, and G. Lykken. 1985. Assessment of Fat-free Mass using Bioelectrical Impedance Measurements of Human Body. National Library of Medicine. 41(4): 810-7. Doi: https://doi.org/10.1093/ajcn/41.4.810.

Kapanen, M., and M. Tenhunen. 2012. T1/T2*-weighted MRI Provides Clinically Relevant Pseudo-CT Density Data for the Pelvic Bones in MRI-Only Based Radiotherapy Treatment Planning. Acta Oncologica. 52(3): 612-618. Doi: https://doi.org/10.3109/0284186X.2012.692883.

Muftuler, L. T., M. Hamamura, O. Birgul, and O. Nalcioglu. 2004. Resolution and Contrast in Magnetic Resonance Electrical Impedance Tomography (MREIT) and Its Application to Cancer Imaging. Technology in Cancer Research & Treatment. 3(6): 599-609. Doi: https://doi.org/10.1177/153303460400300610.

Song, Y., W. Jeong., E. Woo., and J. Seo. 2016. A Method for MREIT-based Source imaging: Simulation Studies. Physics in Medicine & Biology. 61: 5706-5723. Doi: http://dx.doi.org/10.1088/0031-9155/61/15/5706.

Hellige, N.C., B. Meyer., T. Rodt., and J. Claussen. 2012. In-Vitro Evaluation of Contrast Media for Assessment of Regional Perfusion Distribution by Electrical Impedance Tomography (EIT). Biomedical Engineering/ Biomedizinische Technik. 57(Suppl.1). Doi: 10.1515/bmt-2012-4442.

Arpinar, V. E., M. Hamamura., E. Degirmenci., and L. Muftuler. 2012. MREIT Experiments with 200μA Injected Currents: A Feasibility Study Using Two Reconstruction Algorithms, SMM and Harmonic BZ. National Library of Medicine. 57(13): 4245-4261. Doi: https://dx.doi.org/10.1088%2F00319155%2F57%2F13%2F4245.

Jeon, K., C. Lee, and E. Woo. 2017. A Harmonic BZ-Based Conductivity Reconstruction Method in MREIT with Influence of Non-transversal Current Density. Inverse Problems in Science and Engineering. 26(6): 811-833. Doi: https://doi.org/10.1080/17415977.2017.1352587.

Downloads

Published

2023-02-23

Issue

Section

Science and Engineering

How to Cite

QUANTITATIVE ANALYSIS OF ELECTRICAL CURRENT EFFECT ON MAGNETIC RESONANCE IMAGE TISSUE INTENSITY. (2023). Jurnal Teknologi (Sciences & Engineering), 85(2), 141-148. https://doi.org/10.11113/jurnalteknologi.v85.18871