THE EFFECTS OF ADDITIVE ON THE IMPACT ABSORPTION CAPABILITY OF MAGNETORHEOLOGICAL ELASTOMER

Authors

  • Normidatul Salwa Sobri Department of Mechanical Engineering, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia https://orcid.org/0000-0001-7219-4885
  • Khisbullah Hudha Department of Mechanical Engineering, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
  • Zulkiffli Abd Kadir Department of Mechanical Engineering, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
  • Noor Hafizah Amer Department of Mechanical Engineering, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
  • Ku Zarina Ku Ahmad Department of Mechanical Engineering, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.19092

Keywords:

Magnetorheological elastomer, additives, impact mitigation, varying current, impact absorption

Abstract

Magnetorheological elastomer (MRE) is a smart material whose its damping and stiffness characteristics change when exposed to a magnetic field. MRE usually contains rubber and ferrous particles. Other materials such as additives, can improve physical properties of MRE during cyclic loading. However, limited research has been conducted into the effect of incorporating these additives on MRE performance when subjected to impact loading. Additives can change the MRE’s structure such as stiffness and enhance its damping properties, especially its impact absorption capabilities. This study focuses on the force-displacement characteristics of additives and their relationships with MRE containing additives in impact absorption applications. This study uses ferrite, zinc, aluminum, and copper as additives in MREs fabrication and subjects the MREs to a drop impact test at varying applied currents of 0, 0.5, 1.0, 1.5, and 2.0 ampere. The experimental results show that the MRE containing ferrite has the highest average impact absorption capability of 2.24 Nm, followed by zinc, aluminum, and copper.

References

M. H. A. Khairi et al. 2019. Role of Additives in Enhancing the Rheological Properties of Magnetorheological Solids: A Review. Adv. Eng. Mater. 21(3): 1-13. Doi: 10.1002/adem.201800696.

A. Dargahi, R. Sedaghati, and S. Rakheja. 2019. On the Properties of Magnetorheological Elastomers in Shear Mode: Design, Fabrication and Characterization. Compos. Part B Eng. 159: 269-283. Doi: 10.1016/j.compositesb.2018.09.080.

L. Ge, X. Gong, Y. Fan, and S. Xuan. 2013. Preparation and Mechanical Properties of the Magnetorheological Elastomer Based on Natural Rubber/Rosin Glycerin Hybrid Matrix. Smart Mater. Struct. 22(11). Doi: 10.1088/0964-1726/22/11/115029.

J. E. Kim, J. Do Ko, Y. D. Liu, I. G. Kim, and H. J. Choi. 2012. Effect of Medium Oil on Magnetorheology of Soft Carbonyl Iron Particles. IEEE Trans. Magn. 48(11): 3442-3445. Doi: 10.1109/TMAG.2012.2195160.

X. Song, W. Wang, F. Yang, G. Wang, and X. Rui. 2020. The Study of Enhancement of Magnetorheological Effect Based on Natural Rubber/Thermoplastic Elastomer SEBS Hybrid Matrix. J. Intell. Mater. Syst. Struct. 31(3): 339-348. Doi: 10.1177/1045389X19888790.

Y. Kimura, S. Kanauchi, M. Kawai, T. Mitsumata, S. Tamesue, and T. Yamauchi. 2015. Effect of Plasticizer on the Magnetoelastic Behavior for Magnetic Polyurethane Elastomers. Chem. Lett. 44(2): 177-178. Doi: 10.1246/cl.140932.

A. K. Bastola and M. Hossain. 2020. A Review on Magneto-Mechanical Characterizations of Magnetorheological Elastomers. Compos. Part B Eng. 200(May): 108348. Doi: 10.1016/j.compositesb.2020.108348.

J. Fu, M. Yu, X. M. Dong, and L. X. Zhu. 2013. Magnetorheological Elastomer and Its Application on Impact Buffer. J. Phys. Conf. Ser. 412(1). Doi: 10.1088/1742-6596/412/1/012032.

C. W. Lee, I. H. Kim, and H. J. Jung. 2018. Fabrication and Characterization of Natural Rubber-based Magnetorheological Elastomers at Large Strain for Base Isolators. Shock Vib. Doi: 10.1155/2018/7434536.

X. Song, W. Wang, F. Yang, G. Wang, and X. Rui. 2018. Study on Dynamic Mechanical Properties of Magnetorheological Elastomers Based on Natural Rubber/Thermoplastic Elastomer Hybrid Matrix. Nanotechnology. 29(27).

L. Xia, Z. Hu, and L. Sun. 2021. Micromechanics-based Simulation of Anisotropic Magneto-mechanical Properties of Magnetorheological Elastomers with Chained Microstructures. Smart Mater. Struct. 30(9). Doi: 10.1088/1361-665X/ac13b4.

S. U. Khayam, M. Usman, M. A. Umer, and A. Rafique. 2020. Development and Characterization of a Novel Hybrid Magnetorheological Elastomer Incorporating Micro and Nano Size Iron Fillers. Mater. Des. 192. Doi: 10.1016/j.matdes.2020.108748.

M. Maciejewska and A. Sowińska-Baranowska. 2022. The Synergistic Effect of Dibenzyldithiocarbamate Based Accelerator on the Vulcanization and Performance of the Silica-Filled Styrene–Butadiene Elastomer. Materials. 15(4): 1450. Doi: 10.3390/ma15041450.

M. K. Shabdin et al. 2019. Material Characterizations of Gr-Based Magnetorheological Elastomer for Possible Sensor Applications: Rheological and Resistivity Properties. Materials (Basel). 12(3): 1-15. Doi: 10.3390/ma12030391.

C. J. Lee, S. H. Kwon, H. J. Choi, K. H. Chung, and J. H. Jung. 2018. Enhanced Magnetorheological Performance of Carbonyl Iron/Natural Rubber Composite Elastomer with Gamma-Ferrite Additive. Colloid Polym. Sci. 296(9): 1609-1613. Doi: 10.1007/s00396-018-4373-0.

Y. Zhou et al. 2020. The Fabrication and Properties of Magnetorheological Elastomers Employing Bio-Inspired Dopamine Modified Carbonyl Iron Particles. Smart Mater. Struct. 29(5). Doi: 10.1088/1361-665X/ab785b.

E. Burgaz and M. Goksuzoglu. 2020. Effects of Magnetic Particles and Carbon Black on Structure and Properties of Magnetorheological Elastomers. Polym. Test. 81(August): 106233. Doi: 10.1016/j.polymertesting.2019.106233.

X. Gu, Y. Yu, Y. Li, J. Li, M. Askari, and B. Samali. 2019. Experimental Study of Semi-Active Magnetorheological Elastomer Base Isolation System Using Optimal Neuro Fuzzy Logic Control. Mech. Syst. Signal Process. 119: 380-398. Doi: 10.1016/j.ymssp.2018.10.001.

A. Jalali, H. Dianati, M. Norouzi, H. Vatandoost, and M. Ghatee. 2020. A Novel Bi-Directional Shear Mode Magneto-Rheological Elastomer Vibration Isolator. J. Intell. Mater. Syst. Struct. 31(17): 2002-2019. Doi: 10.1177/1045389X20942314.

K. Xiao, H. Bai, X. Xue, and Y. Wu. 2018. Damping Characteristics of Metal Rubber in the Pipeline Coating System. Shock Vib. 2018. Doi: 10.1155/2018/3974381.

Ubaidillah, S. A. Mazlan, J. Sutrisno, and H. Zamzuri. 2014. Potential Applications of Magnetorheological Elastomers. Appl. Mech. Mater. 663: 695-699. Doi: 10.4028/www.scientific.net/AMM.663.695.

P. Liu, X. Xia, N. Zhang, D. Ning, and M. Zheng. 2019. Torque Response Characteristics of a Controllable Electromagnetic Damper for Seat Suspension Vibration Control. Mech. Syst. Signal Process. 133: 106238. Doi: 10.1016/j.ymssp.2019.07.019.

H. Zhou, H. Liu, P. Gao, and C. Le Xiang. 2018. Optimization Design and Performance Analysis of Vehicle Powertrain Mounting System. Chinese J. Mech. Eng. 31(2): Doi: 10.1186/s10033-018-0237-2.

B. Kavlicoglu, Y. Liu, B. Wallis, H. Sahin, M. McKee, and F. Gordaninejad. 2020. Two-way Controllable Magnetorheological Elastomer Mount for Shock and Vibration Mitigation. Smart Mater. Struct. 29(2). Doi: 10.1088/1361-665X/ab4223.

K. Hudha, N. Salwa Sobri, K. Sumasundram, N. Akmal Haniffah, Z. Abd Kadir, and M. Sabirin Rahmat. 2022. Investigation on the Effect of the Ferrous Particles Size on the Impact Absorption Capability of Magnetorheological Elastomer. 2022 IEEE 18th Int. Colloq. Signal Process. Appl. CSPA 2022 - Proceeding. May: 299-303. Doi: 10.1109/CSPA55076.2022.9782010.

G. Barrera et al., “Cation Distribution Effect on Static and Dynamic Magnetic Properties of Co1-xZnxFe2O4 Ferrite Powders,” J. Magn. Magn. Mater., vol. 456, pp. 372–380, 2018, doi: 10.1016/j.jmmm.2018.02.072.

S. A. A. Aziz et al. 2016. Effects of Multiwall Carbon Nanotubes on Viscoelastic Properties of Magnetorheological Elastomers. Smart Mater. Struct. 25(7). Doi: 10.1088/0964-1726/25/7/077001.

O. N. Dubinin et al. 2022. Gradient Soft Magnetic Materials Produced by Additive Manufacturing from Non-Magnetic Powders. J. Mater. Process. Technol. 300(September): 117393. Doi: 10.1016/j.jmatprotec.2021.117393.

Downloads

Published

2023-06-25

Issue

Section

Science and Engineering

How to Cite

THE EFFECTS OF ADDITIVE ON THE IMPACT ABSORPTION CAPABILITY OF MAGNETORHEOLOGICAL ELASTOMER. (2023). Jurnal Teknologi, 85(4), 17-25. https://doi.org/10.11113/jurnalteknologi.v85.19092