INFLUENCE OF DOUBLE CALCINATION-MILLING ROUTE ON THE STRUCTURAL AND MICROSTRUCTURAL PROPERTIES OF LEAD-FREE K0.5NA0.5NBO3 (KNN) CERAMICS

Authors

  • Norni Hidayawati Mat Daud Centre for Pre-University Study, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia https://orcid.org/0009-0007-9594-0044
  • Dzetty Soraya Abdul Aziz Centre for Pre-University Study, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Idza Riati Ibrahim Centre for Pre-University Study, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia https://orcid.org/0000-0002-8381-4979
  • Dayang Salyani Abang Mahmod Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia https://orcid.org/0000-0002-9461-7057
  • Amir Azam Khan School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
  • Nor Amalina Ahmad Centre for Pre-University Study, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Nurul Aisyah Farhani Mohd Fuad Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.19202

Keywords:

Potassium Sodium Niobate, piezoelectric ceramic, double calcination, solid state method, sintering

Abstract

Potassium sodium niobate (KNN) has always been one of the most potential candidates to replace lead-based piezoelectric ceramics due to its strong piezoelectric properties and environmentally friendly composition. A strong piezoelectric property is constantly influenced by the sample's densification as well as its microstructural characteristics. One of the current main issues with this KNN lead-free piezoelectric material is the difficulty in creating high-density samples by conventional preparation and sintering. Thus, KNN lead-free ceramics were synthesised using an improved solid-state method by introducing the double calcination-milling route to this process. The outcome demonstrates that, despite the presence of additional KNN secondary phases, the double calcination-milling approach contributed to the early creation of the KNN phase. When sintered pellets are subjected to a double calcination milling process, the XRD pattern revealed that the main peaks of the sample are indexed to orthorhombic K0.5Na0.5NbO3. The double calcination KNN pellet have a relative density of 90% densification which is slightly higher than that of single calcination KNN pellet which shows 88% densification.

References

Hao, J., Li, W., Zhai, J., and Chen, H. 2019. Progress in High-strain Perovskite Piezoelectric Ceramics. Materials Science and Engineering R: Reports. 135: 1-57. Doi:10.1016/j.mser.2018.08.001.

Kumar, A., Sharma, A., Kumar, R., Vaish, R., Chauhan, V. S., and Bowen, C. R. 2015. Piezoelectric Materials Selection for Sensor Applications using Finite Element and Multiple Attribute Decision-making Approaches. Journal of Advanced Dielectrics. 5(1). Doi:10.1142/S2010135X15500034.

Moriana, A. D., and Zhang, S. 2018. Lead-free Textured Piezoceramics using Tape Casting: A Review. Journal of Materiomics. 4(4): 277-303. Doi:10.1016/j.jmat.2018.09.006.

Izzuddin, I., Mohammad, M. H., Zainuddin, Z., and Janil, N. H. 2019. Piezoelectric Enhancements in K0.5Na0.5NbO3-based Ceramics via Structural Evolutions. Ceramics International. 45(14): 17204-17209. Doi:10.1016/j.ceramint.2019.05.275.

Khorrami, G. H., Kompany, A., and Khorsand Zak, A. 2013. A Facile Sol-gel Approach to Synthesize KNN Nanoparticles at Low Temperature. Materials Letters. 110: 172-175. Doi:10.1016/j.matlet.2013.07.115.

Piskin, C., Karacasulu, L., Bortolotti, M., and Vakifahmetoglu, C. 2021. Synthesis of Potassium–sodium Niobate (KNN) from NbO2. Open Ceramics. 7. Doi:10.1016/j.oceram.2021.100159.

Li, H., Hao, Y., Lin, Z., et al. 2022. (K,Na)NbO3 Lead-free Piezoceramics Prepared by Microwave Sintering and Solvothermal Powder Synthesis. Solid State Communications. 353: 114871. Doi:10.1016/J.SSC.2022.114871.

Feizpour, M., Ebadzadeht, T., and Jenko, D. 2015. Solid-state Sintering of (K0.5Na0.5)NbO3 Synthesized from an Alkali-carbonate-based Low-temperature Calcined Powder. Materiali in Tehnologije. 49(6): 975-982. Doi:10.17222/mit.2015.315

Rani, R., Sharma, S., Quaglio, M., et al. 2017. A Novel Low Temperature Synthesis of KNN Nanoparticles by Facile Wet Chemical Method. Materials Sciences and Applications. 08(03): 247-257. Doi:10.4236/msa.2017.83017.

Popovič, A., Bencze, L., Koruza, J., and Malič, B. 2015. Vapour Pressure and Mixing Thermodynamic Properties of the KNbO3-NaNbO3 System. RSC Advances. 5(93): 76249-76256. Doi:10.1039/c5ra11874c.

. Quintero, M. C., Rincón, M., Osorio-Guillén, J. M., López, D., and Londoño-Badillo, F. A. 2019. Grinding Methods Effects on the Synthesis of Potassium-Sodium Niobate Powders by Oxide Mixing. TecnoLógicas. 22(46): 15-23. Doi:10.22430/22565337.1269.

Ahmad, N. A., Aziz, D. S. A., Daud, N. H. M., Noor, R., and Khan, A. A. 2020. Synthesis and Characterization of Lead-free Piezoelectric (K0.5Na0.5)NbO3 Produced with Improved Calcination Temperature. Jurnal Teknologi. 82(2): 139-147. Doi:10.11113/jt.v82.13992.

Wei, N., Wang, J., Li, B., Huan, Y., and Li, L. 2015. Improvement of the Piezoelectric and ferroelectric Properties of (K, Na)0.5NbO3 Ceramics via Two-step Calcination-milling Route. Ceramics International. 41(8): 9555-9559. Doi:10.1016/j.ceramint.2015.04.015.

Zhang, N., Zheng, T., and Wu, J. 2020. Lead-Free (K,Na)NbO3-based Materials: Preparation Techniques and Piezoelectricity. ACS Omega. 5(7): 3099-3107. Doi:10.1021/acsomega.9b03658.

Li, B. Y., Chen, X. M., Liu, M. D., Yu Z. De., Lian, H. L., and Zhou, J. P. 2021. Improved Ferroelectric and Piezoelectric Properties of (Na0.5K0.5)NbO3 Ceramics via Sintering in Low Oxygen Partial Pressure Atmosphere and Adding LiF. Journal of Advanced Dielectrics. 11(2). Doi:10.1142/S2010135X21500120.

Nandini, R. N., Krishna, M., Suresh, A. V., and Narasimha Rao, K. 2018. Effect of Calcination Kinetics and Microwave Sintering Parameters on Dielectric and Peizo-electric Properties of (K0.5Na0.5) NBO3 Ceramics. Iranian Journal of Materials Science and Engineering. 15(2): 14-31. Doi:10.22068/ijmse.15.2.14.

Gul, M., Gurbuz, M., Gokceyrek, A. B., Toktas, A., Kavas, T., and Dogan, A. 2020. Influence of Particle Size and Sintering Temperatures on Electrical Properties of 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 Lead Free Ceramics. Archives of Metallurgy and Materials. 65: 609-614. Doi:10.24425/amm.2020.132799.

Dávila, L. F., Quintero, M. C., and Londoño, F. A. 2021. Influence of Synthesis Process on the Structural and Microstructural Behavior of Neodymium Doped Sodium and Potassium Niobate Powders. Journal of Physics: Conference Series. 2046(1). Doi:10.1088/1742-6596/2046/1/012054.

Malič, B., Koruza, J., Hreščak, J., et al. 2015. Sintering of Lead-free Piezoelectric Sodium Potassium Niobate Ceramics. Materials. 8(12): 8117-8146. Doi:10.3390/ma8125449.

Ye, G., Wade-Zhu, J., Zou, J., Zhang, T., Button, T. W., and Binner, J. 2020. Microstructures, Piezoelectric Properties and Energy Harvesting Performance of Undoped (K0.5Na0.5)NbO3 Lead-free Ceramics Fabricated via Two-step Sintering. Journal of the European Ceramic Society. 40(8): 2977-2988. Doi:10.1016/j.jeurceramsoc.2020.02.035.

Ohbayashi, K. 2016. Piezoelectric Properties and Microstructure of (K,Na)NbO3–KTiNbO5 Composite Lead-Free Piezoelectric Ceramic. Piezoelectric Materials http://dx.doi.org/10.5772/62869.

Ji, Jae-Hoon, Moon, Un-Chul, Kwon, Hyuck-In, Koh, Jung-Hyuk. 2017. The Two-step Sintering Effect on the Dielectric and Piezoelectric Properties of (Na,K)NbO3-BiScO3 Lead-free Ceramics. Ceramics International. 43. Doi:10.1016/j.ceramint.2017.05.237.

Downloads

Published

2023-04-19

Issue

Section

Science and Engineering

How to Cite

INFLUENCE OF DOUBLE CALCINATION-MILLING ROUTE ON THE STRUCTURAL AND MICROSTRUCTURAL PROPERTIES OF LEAD-FREE K0.5NA0.5NBO3 (KNN) CERAMICS. (2023). Jurnal Teknologi (Sciences & Engineering), 85(3), 75-81. https://doi.org/10.11113/jurnalteknologi.v85.19202