THE STATE OF PLAY: SYMBIOTIC CULTURE OF BACTERIA AND YEASTS (SCOBY) IN TEXTILE INDUSTRY
DOI:
https://doi.org/10.11113/jurnalteknologi.v86.19322Keywords:
Kombucha, SCOBY, Zygosaccharomyces, Acetobacter xylinumAbstract
The fermentation of Kombucha tea produces SCOBY, or Symbiotic Culture of Bacteria and Yeast, as a result of the interaction between bacteria and yeast. In order to fully explore the potential of employing this cellulose as a viable raw material in many applications of industry, numerous studies on the Kombucha SCOBY are now being done. According to studies, Zygosaccharomyces and Acetobacter xylinum are the most frequent bacteria found throughout the SCOBY fermentation process. At the air-liquid interface, these microorganisms help produce cellulose fibrils extracellularly, resulting in a biofilm. An overview of the favourable conditions for SCOBY manufacture is provided in more specific, as well as the aspects that may influence the product, and its suitability for textile and fashion sector applications is appraised. The advantages of this biofilm are being explored, including in several industries especially in textile and fashion industry. The microbial consortium's tea fermentation process was able to demonstrate an increase in specific biological activities that had previously been researched. However, there are some limitations in the applications of SCOBY in the textile that need to be highlighted. Thus, this review focuses on the SCOBY properties, challenges and potential available to make it feasible in textile industries.
References
Jayabalan, R. and Waisundara, V. Y. 2019. Kombucha as a Functional Beverage. In Functional and Medicinal Beverages. Academic Press. 413-446.
Gaggìa, F., Baffoni, L., Galiano, M., Nielsen, D. S., Jakobsen, R. R., Castro-Mejía, J. L., Bosi, S., Truzzi, F., Musumeci, F., Dinelli, G. and Di Gioia, D. 2019. Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients. 11(1): 1.
Doi: https://doi.org/10.3390/nu11010001.
Dutta, H. and Paul, S. K. 2019. Kombucha Drink: Production, Quality, and Safety Aspects. In A. M. Grumezescu & A. M. Holban (Eds.). Production and Management of Beverages. 259-288.
Sharma, C. and Bhardwaj, N. K. 2019. Biotransformation of Fermented Black Tea into Bacterial Nanocellulose via Symbiotic Interplay of Microorganisms. International Journal of Biological Macromolecules. 132: 166-177.
Doi: https://doi.org/10.1016/j.ijbiomac.2019.03.202.
Leal, J. M., Suárez, L. V., Jayabalan, R., Oros, J. H. and Escalante-Aburto, A. 2018. A Review on Health Benefits of Kombucha Nutritional Compounds and Metabolites. CYTA-Journal of Food. 16(1): 390-399.
Doi: https://doi.org/10.1080/19476337.2017.1410499.
Ledormand, P., Desmasures, N. and Dalmasso, M. 2020. Phage Community Involvement in Fermented Beverages: An Open Door to Technological Advances? Critical Reviews in Food Science and Nutrition. 61(17): 1-10.
Doi: https://doi.org/10.1080/10408398.2020.1790497.
May, A., Narayanan, S., Alcock, J., Varsani, A., Maley C. and Aktipis, A. 2019. Kombucha: A Novel Model System for Cooperation and Conflict in a Complex Multi-species Microbial Ecosystem. PeerJ. 7: e7565.
Doi: https://doi.org/10.7717/peerj.7565.
Laavanya, D., Shirkole, S. and Balasubramanian, P. 2021. Current Challenges, Applications and Future Perspectives of SCOBY Cellulose of Kombucha Fermentation. Journal of Cleaner Production. 295(126454): 1-18.
Doi: https://doi.org/10.1016/j.jclepro.2021.126454.
Coton, M., Pawtowski, A., Taminiau, B., Burgaud, G., Deniel, F., Coulloumme-Labarthe, L., Fall, A., Daube, G. and Coton, E. 2017. Unraveling Microbial Ecology of Industrial-scale Kombucha Fermentations by Metabarcoding and Culture-based Methods. FEMS Microbiology Ecology. 93(5).
Doi: https://doi.org/10.1093/femsec/fix048
Zhao, Z. J., Sui, Y. C., Wu, H. W., Zhou, C. B., Hu, X. C. and Zhang, J. 2018. Flavour Chemical Dynamics during Fermentation of Kombucha Tea. Emirates Journal of Food and Agriculture. 732-741.
Doi: https://doi.org/10.1093/femsec/fix048.
Barshan, S., Rezazadeh-Bari, M., Almasi, H. and Amiri, S. 2019. Optimization and Characterization of Bacterial Cellulose Produced by Komagatacibacter Xylinus PTCC 1734 using Vinasse as a Cheap Cultivation Medium. International Journal of Biological Macromolecules. 136: 1188-1195.
Doi: https://doi.org/10.1016/S1389-1723(04)70162.
Chawla, P. R., Bajaj, I. B., Survase, S. A. and Singhal, R. S. 2009. Microbial Cellulose: Fermentative Production and Applications (Review). Food Technology and Biotechnology. 47(2): 107-124.
Doi: http://dx.doi.org/10.1016/j.aaspro.2014.11.017.
Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J. and Taillandier, P. 2018. Understanding Kombucha Tea Fermentation: A Review. Journal of Food Science. 83(3): 580-588.
Doi: https://doi.org/10.1111/1750-3841.14068.
Rahmani, R., Beaufort, S., Villarreal-Soto, A., Taillandier, P., Bouajila, J., Debouba, M. 2019. Kombucha Fermentation of African Mustard (Brassica tournefortii) Leaves: Chemical Composition and Bioactivity. Food Bioscience. 30: 100414.
Doi: 10.1016/j.fbio.2019.100414
Markov, S. L., Jerinić, V. M., Cvetković, D. D., Lončar, E. S. and Malbaša, R. V. 2003. Kombucha-functional Beverage: Composition, Characteristics and Process of Biotransformation. Hemijska Industrija. 57(10): 456-462.
Doi: https://doi.org/10.2298/HEMIND0310456S.
Coelho, R. M. D., Almeida, A. L. de, Amaral, R. Q. G. do, Mota, R. N. da. and Sousa, P. H. M. de. 2020. Kombucha: Review. International Journal of Gastronomy and Food Science. 22: 100272.
Doi: https://doi.org/10.1016/j.ijgfs.2020.100272.
Antolak, H., Piechota, D. and Kucharska, A. 2021. Kombucha Tea—A Double Power of Bioactive Compounds from Tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants. 10: 1541.
Doi: https://doi.org/10.3390/antiox10101541.
Xiang, Q., Liu, X., Li, J., Liu, S., Zhang, H. and Bai, Y. 2018. Effects of Dielectric Barrier Discharge Plasma on the Inactivation of Zygosaccharomyces rouxii and Quality of Apple Juice. Food Chemistry. 254: 201-207.
Doi: https://doi.org/10.1016/j.foodchem.2018.02.008.
Zhao, C. N., Tang, G. Y., Cao, S. Y., Xu, X. Y., Gan, R. Y., Liu, Q., Mao, Q. Q., Shang, A. and Li, H. B. 2019. Phenolic Profiles and Antioxidant Activities of 30 Tea Infusions from Green, Black, Oolong, White, Yellow and Dark Teas. Antioxidants. 8(7): 215.
Doi: https://doi.org/10.3390/antiox8070215.
Jayabalan, R., Malbaša, R. V., Lončar, E. S., Vitas, J. S. and Sathishkumar, M. 2014. A Review on Kombucha Tea-microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Comprehensive Reviews in Food Science and Food Safety. 13(4): 538-550.
Doi: https://doi.org/10.1111/1541-4337.12073.
Santos, M. J. 2016. Kombucha: caracterização da microbiota e desenvolvimento de novos produtos alimentares para uso em restauração. Dissertação (Mestrado) - Curso de Mestrado em Ciências Gastronômicas Universidade Nova de Lisboa, Lisboa.
Kumar, V. and Joshi, V. K. 2016. Kombucha: Technology, Microbiology, Production, Composition and Therapeutic Value. International Journal of Food and Fermentation Technology. 6(1): 13-24.
Doi: http://dx.doi.org/10.5958/2277-9396.2016.00022.2.
Kim, J. and Adhikari, K. 2020. Current trends in Kombucha: Marketing Perspectives and the Need for Improved Sensory Research. Beverages. 6(1): 15.
Doi: https://doi.org/10.3390/beverages6010015.
Soares, M. G., de Lima, M. and Schmidt, V. C. R. 2021. Technological Aspects of Kombucha, Its Applications and the Symbiotic Culture (SCOBY), and Extraction of Compounds of Interest: A Literature Review. Trends in Food Science & Technology. 110: 539-550.
Doi: https://doi.org/10.1016/j.tifs.2021.02.017.
Ahmad, A. and Ahmed, Z. 2019. Fortification in Beverages. Production and Management of Beverages. 1: 85-122.
Doi: https://doi.org/10.1016/B978-0-12-815260-7.00003-1
Sadh, P. ., Kumar, S., Chawla, P. and Duhan, J. S. 2018. Fermentation: A Boon for Production of Bioactive Compounds by Processing of Food Industries Wastes (By Products). Molecules. 23(10): 2560.
Doi: https://doi.org/10.3390/molecules23102560.
Piasecka, A., Krzeminska, I. and TYS, J. 2017. Enrichment of Parachlorella Kessleri Biomass with Bio-products: Oil and Protein by Utilization of Beet Molasses. Journal of Applied Phycology. 29(4): 1735-1743.
Doi: https://doi.org/10.1007/s10811-017-1081-y.
Chen, M., Zhao, Z., Meng, H. and Yu, S. 2017. The Antibiotic Activity and Mechanisms of Sugar Beet (Beta vulgaris) Molasses Polyphenols against Selected Food-Borne Pathogens. LWT-Food Science and Technology. 82: 354–360.
Doi: https://doi.org/10.1016/j.lwt.2017.04.063.
Palmonari, A., Cavallini, D., Sniffen, C. J., Fernandes, L., Holder, P., Fagioli, L., Fusaro, I., Biagi, G., Formigoni, A. and Mammi, L. 2020. Short Communication: Characterization of Molasses Chemical Composition. Journal of Dairy Science. 103: 6244-6249.
Doi: https://doi.org/10.3168/jds.2019-17644.
Hussain, Z., Sajjad, W., Khan, T. and Wahid, F. 2019. Production of Bacterial Cellulose from Industrial Wastes: A Review. Cellulose. 26(5): 2895-2911.
Doi: https://doi.org/10.1007/s10570-019-02307-1.
Mousavi, S. M., Hashemi, S. A., Zarei, M., Gholami, A., Lai, C. W., Chiang, W. H., Omidifar, N., Bahrani, S., Mazraedoost, S. 2020. Recent Progress in Chemical Composition, Production, and Pharmaceutical Effects of Kombucha Beverage: A Complementary and Alternative Medicine. Evidence-Based Complementary and Alternative Medicine. 2020: 1-14.
Doi: https://dx.doi.org/10.1155/2020/4397543.
Laureys, D., Britton, S. J. and De Clippeleer, J. 2020. Kombucha Tea Fermentation: A Review. Journal of the American Society of Brewing Chemists. 78(3): 165-174.
Doi: https://doi.org/10.1080/03610470.2020.1734150.
Ayed, L., M’hir, S. and Hamdi, M. 2020. Microbiological, Biochemical, and Functional Aspects of Fermented Vegetable and Fruit Beverages. Journal of Chemistry. 2020: 1-12.
Doi: 10.1155/2020/5790432.
Lorenzo, J. M. and Munekata, P. S. 2016. Phenolic Compounds of Green Tea: Health Benefits and Technological Application in Food. Asian Pacific Journal of Tropical Biomedicine. 6: 709-719.
Doi: https://doi.org/10.1016/j.apjtb.2016.06.010.
Adamczak, A., Ożarowski, M. and Karpiński T. M. 2019. Antibacterial Activity of Some Flavonoids and Organic Acids Widely Distributed in Plants. Journal of Clinical Medicine. 9(1): 109.
Doi: https://doi.org/10.3390/jcm9010109.
Khojasteh, A., Mirjalili, M. H., Alcalde, M. A., Cusido, R. M., Eibl, R. and Palazon, J. 2020. Powerful Plant Antioxidants: A New Bio Sustainable Approach to the Production of Rosmarinic Acid. Antioxidants. 9(12): 1273.
Doi: https://doi.org/10.3390/antiox9121273.
Al-Dabbagh, B., Elhaty, I.A., Elhaw, M., Murali, C., Al Mansoori, A., Awad, B. and Amin, A. 2019. Antioxidant and Anticancer Activities of Chamomile (Matricaria recutita L.). BMC Research Notes. 12(1): 1-8.
Doi: https://doi.org/10.1186/s13104-018-3960-y.
Emiljanowicz, K. E. and Malinowska-Pańczyk, E. 2020. Kombucha from Alternative Raw Materials–The Review. Critical Reviews In Food Science and Nutrition. 60(19): 3185-3194.
Doi: https://doi.org/10.1080/10408398.2019.1679714.
Bishop, P., Pitts, E. R., Budner, D., and Thompson-Witrick, K. A. 2022. Chemical Composition of Kombucha. Beverages. 8: 45.
Doi: 10.3390/beverages8030045.
Gargey, I. A., Indira, D., Jayabalan, R. and Balasubramanian, P. 2019. Optimization of Etherification Reactions for Recycling of Tea Fungal Biomass Waste into Carboxymethylcellulose. Springer Transactions in Civil and Environmental Engineering. 337-346.
Doi: 10.1007/978-981-13-1202-1_29.
Shenoy, C. and Dias, F. O. 2016. Protective Effect of Kombucha on Diabetic Nephropathy in Streptozotocin - Induced Diabetic Rats. International Journal of Science and Research. 5(3): 945-948.
Aduri, P., Rao, K. A., Fatima, A., Kaul, P. and Shalini, A. 2019. Study of Biodegradable Packaging Material Produced from SCOBY. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences. 5(3): 389.
Doi: 10.26479/2019.0503.32.
El-Wakil, N. A., Hassan, E. A., Hassan, M. L. and Abd El-Salam, S. S. 2019. Bacterial Cellulose/phytochemical’s Extracts Biocomposites for Potential Active Wound Dressings. Environmental Science and Pollution Research. 26(26): 26529-26541.
Doi: https://doi.org/10.1007/s11356-019-05776-w.
Kapp, J. M. and Sumner, W. 2019. Kombucha: a Systematic Review of the Empirical Evidence of Human Health Benefit. Annals of Epidemiology. 30: 66-70.Doi: https://doi.org/10.1016/j.annepidem.2018.11.001.
Kalaiappan, K., Rengapillai, S., Marimuthu, S., Murugan, R. and Thiru, P. 2020. Kombucha SCOBY-based Carbon and Graphene Oxide Wrapped Sulfur/polyacrylonitrile as a High-capacity Cathode in Lithium-sulfur Batteries. Frontiers of Chemical Science and Engineering. 14(6): 976-987.
Doi: https://doi.org/10.1007/s11705-019-1897-x
Kamiński, K., Jarosz, M., Grudzień, J., Pawlik, J., Zastawnik, F., Pandyra, P. and Kołodziejczyk, A. M. 2020. Hydrogel Bacterial Cellulose: A Path to Improved Materials for New Eco-friendly Textiles. Cellulose. 27(9): 5353-5365.
Doi: https://doi.org/10.1007/s10570-020-03128-3.
Sederavičiūtė, F., Bekampienė, P. and Domskienė, J. 2019. Effect of Pre-treatment Procedure on Properties of Kombucha Fermented Bacterial Cellulose Membrane. Polymer Testing. 78: 105941.
Doi: https://doi.org/10.1177/0040517521992357.
Martins, D., Estevinho, B., Rocha, F., Dourado, F. and Gama, M. 2020. A Dry and Fully Dispersible Bacterial Cellulose Formulation as a Stabilizer for Oil-in-Water Emulsions. Carbohydrate Polymers. 230: 115657.
Doi: https://doi.org/10.1016/j.carbpol.2019.115657.
Song, J. E, Cavaco-Paulo, A., Silva, C. and Kim, H. R. 2020. Improvement of Bacterial Cellulose Nonwoven Fabrics by Physical Entrapment of Lauryl Gallate Oligomers. Textile Research Journal. 90(2): 166-178.
Doi: https://doi.org/10.1177/0040517519862886.
Fernandes, I. de, A. A., Pedro, A. C., Ribeiro, V. R., Bortolini, D. G., Ozaki, M. S. C., Maciel, G. M. and Haminiuk, C. W. I. 2020. Bacterial Cellulose: From Production Optimization to New Applications. International Journal of Biological Macromolecules. 164: 2598-2611.
Doi: https://doi.org/10.1016/j.ijbiomac.2020.07.255.
Bagewadi, Z. K., Bhavikatti, J. S., Muddapur U. M., Yaraguppi, D. A. and Mulla, S. I. 2020. Statistical Optimization and Characterization of Bacterial Cellulose Produced by Isolated Thermophilic Bacillus Licheniformis Strain ZBT2. Carbohydrate Research. 49: 107979.
Doi: https://doi.org/10.1016/j.carres.2020.107979.
Naeem, M. A., Lv, P., Zhou, H., Naveed, T. and Wei, Q. 2018. A Novel In-situ Self-assembling Fabrication Method for Bacterial Cellulose-electrospun Nanofiber Hybrid Structures. Polymers. 10(7): 712.
Doi: https://doi.org/10.3390/polym10070712.
Pei, J., Jin, W., Abd El-Aty, A. M., Baranenk,o D. A., Gou X. and Zhang, H. 2020. Isolation, Purification, and Structural Identification of a New Bacteriocin Made by Lactobacillus Plantarum Found in Conventional Kombucha. Food Control. 110: 106923.
Doi: https://doi.org/10.1016/j.foodcont.2019.106923.
Saha, N., Ngwabebhoh, F. A., Nguyen, H. T. and Saha, P. 2020. Environmentally Friendly and Animal Free Leather: Fabrication and Characterization. AIP Conference Proceedings. 2289(1): 020049-1- 020049-6.
Doi: https://doi.org/10.1063/5.0028467.
Lee, Y. A. 2016. Case Study of Renewable Bacteria Cellulose Fiber and Biopolymer Composites in Sustainable Design Practices. In: Muthu, S., Gardetti, M. (eds). Sustainable Fibres for Fashion Industry. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore.
oi: https://doi.org/10.1007/978-981-10-0522-0_6.
Domskiene, J., Sederaviciute, F. and Simonaityte, J. 2019. Kombucha Bacterial Cellulose for Sustainable Fashion. International Journal of Clothing Science and Technology. 31(5): 644-652.
Doi: https://doi.org/10.1108/IJCST-02-2019-0010.
Podolich O., Zaets, I., Kukharenko, O., Orlovska, I., Reva, O., Khirunenko, L., Sosnin, M., Haidak, A., Shpylova, S., Rabbow, E., Skoryk, M., Kremenskoy, M., Demets, R., Kozyrovska, N. and de vera, J. P. 2017. Kombucha Multimicrobial Community under Simulated Spaceflight and Martian Conditions. Astrobiology. 17: 459-469.
Doi: https://doi.org/10.1089/ast.2016.1480.
Costa, A. F de S., de Amorim, J. D. P., Almeida, F. C. G., de Lima, I. D., de Paiva, S. C., Rocha, M. A. V., Vinhas, G. M. and Sarubbo., L. A. 2019. Dyeing of Bacterial Cellulose Films using Plant-based Natural Dyes. Internaitonal Journal of Biological Macromolecules. 121: 580-587.
Doi: https://doi.org/10.1016/j.ijbiomac.2018.10.066.
Araujo, S., da Silva, F. M. and Gouveia, I. C. 2015. The Role of Technology Towards a New Bacterial-Cellulose-based Material for Fashion Design. Journal of Industrial and Intelligent Information. 3(2): 168-172.
Doi: https://doi.org/10.12720/jiii.3.2.168-172.
Halib, N., Ahmad, I., Grassi, M. and Grassi G. 2019. The Remarkable Three-dimensional Network Structure of Bacterial Cellulose for Tissue Engineering Applications. International Journal of Pharmaceutics. 566: 631-640.
Doi: https://doi.org/10.1016/j.ijpharm.2019.06.017.
Patwa, R., Saha, N., Saha, P. and Katiyar, V. 2019. Biocomposites of Poly(Lactic Acid) and Lactic Acid Oligomer-grafted Bacterial Cellulose: It’s Preparation and Characterization. Journal of Applied Polymer Science. 136(35): 1-13
Doi: https://doi.org/10.1002/app.47903.
Provin, A. P., dos Reis, V. O. and Hilesheim, S. E. 2021. Use of Bacterial Cellulose in the Textile Industry and the Wettability Challenge-A Review. Cellulose. 28: 8255-8274.
Doi: https://doi.org/10.21203/rs.3.rs-246462/v1.
Dhar, P., Pratto, B., Cruz, A. J. G. and Bankar, S. 2019. Valorization of Sugarcane Straw to Produce Highly Conductive Bacterial Cellulose/graphene Nanocomposite Films through In Situ Fermentation: Kinetic Analysis and Property Evaluation. Journal of Cleaner Production. 238: 117859.
Doi: https://doi.org/10.1016/j.jclepro.2019.117859.
Camere, S. and Karana, E. 2018. Fabricating Materials from Living Organisms: An Emerging Design Practice. Journal of Cleaner Production. 186: 570-584.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.