DEVELOPMENT OF ECOFRIENDLY PLASTIC BAGS FROM BIOTHERMOPLASTIC COMPOSITE OF MODIFIED CASSAVA STARCH–GLUCOMANNAN-POLYVINYL ALCOHOL-POLYCAPROLACTONE

Authors

  • Bambang Admadi Harsojuwono Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung (80361), Bali, Indonesia https://orcid.org/0000-0001-8259-8162
  • I Wayan Arnata Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung (80361), Bali, Indonesia
  • Amna Hartiati Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung (80361), Bali, Indonesia
  • Ida Bagus Wayan Gunam Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung (80361), Bali, Indonesia https://orcid.org/0000-0002-2822-6656
  • Yohanes Setiyo Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology, Udayana University, Badung (80361), Bali, Indonesia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.19963

Keywords:

Ecofriendly plastic bags; MSGPVAPCL; type of molding material; the sealing temperature

Abstract

The purpose of the study was to determine the type of molding material and the sealing temperature in the formation of ecofriendly plastic bags made from a Modified Starch – Glucomannan – Polyvinyl Alcohol – Polycaprolactone (MSGPVAPCL) biothermoplastic composites. The study used a factorial randomized block design experiment. Factor 1: the type of molding material consists of Teflon and acrylic while factoring 2: the sealing temperature with levels of 90, 95, 100, 105, and 110 °C. Mechanical, physical, biological and chemical characteristics were observed. The research results show that the type of teflon molding material and the sealing temperature of 105°C gave the best characteristics of ecofriendly plastic bags with a tensile strength value of 28.62 MPa, elongation at break of 8.68%, Young's modulus 449.44 MPa, a heat seal tensile strength on the bag handle of 6.10 N, a heat seal tensile strength on the bag bottom of  4.10 N, tear strength direction longitudinally of 3.61 N, transverse tear strength of 1.78 N, WVTR of 91.23 g/m2/day, swelling of 5.31% and biodegradation time of 7.00 days, the maximum evaporation temperature of 72.43 °C, degradation temperature of 220.97 °C and a weight loss of 30.07%, a crystalline degree of 20.71% and an amorphous degree of 79.29%, a smooth longitudinal surface profile with slight waves and a transverse surface profile showing the presence of waves and fine fibers, containing functional groups O-H alcohol, C=O, C=C, C-O and (CH2)n and no heavy metals were detected. 

References

Emma, A. 2020. Various Kinds of Substitutes for Plastic Bags for A Greener Earth. [internet]. [cited 2022 Sep 7] Available from: https://laundry.drop.id/blog/d-laundry/variety-pengganti-kantong-plastik/.

Patton, E., and Li, H. 2021. Turning the tide: How can Indonesia close the loop on plastic waste. [internet]. [cited 2022 Dec 30]. Available from : https://www.wilsoncenter.org/sites/default/files/media/uploads/documents/Insight% 20OutApril2021 FINALr4 .pdf.

Aprindo, 2021. The Importance of Processing Plastic Waste in Indonesia. [internet]. [cited 2022 Sep 7] Available from: https://bijakberplastic.aqua.co.id/publikasi/uncategorized/pentingnya-pengolahan-sampah-plastik-di-indonesia/.

OECD/FAO. 2022. Other products - OECD-FAO Agricultural Outlook 2022–2031. [internet]. [cited 2022 Dec 8] Available from: https://www.fao.org.

Harsojuwono, B. A., Hartiati, A., Hatiningsih, S. 2021. Characteristics of the Glucomannan - Modified Cassava Starch Biothermoplastic Composites on the Variety of Types and Concentrations of Reinforcing Materials. Inter. J. of Pharmac. Res. 13(2): 912–923. doi: 10.31838/ijpr/2021.13.02.143

Paoli, M. A. D. 2019. Bio-based Additives for Thermoplastics. Polimeros 29(2):1-9. http://dx.doi.org/10.1590/ 0104-1428.06318.

Park, S. A., Jeon, H., Kim, H., Shin, S. H., Choy, S., Hwang, D. S, Koo, J. M., Jegal, J., Hwang, S. Y., Park, J., and Oh, D. X. 2019. Sustainable and Recyclable Super Engineering Thermoplastic from Bio Renewable Monomer. Nat. 10(2601): 23–36. doi: 10.1038/s41467-019-10582-6

Harsojuwono, B. A., Arnata, I. W., Hartiati, A., Setiyo, Y., Hatiningsih, S., and Suriati, L. 2022. The Improvement of the Modified Starch-Glucomannan-Polyvinyl Alcohol Biothermoplastic Composite Characteristics with Polycaprolactone and Anhydride Maleic Acid. Front. in Sustain. Food Sys. 2022:8444851: 1–13. https://doi.org/10. 3389/fsufs.2022.8444851

Judawisastra, H., Sitohang, R. D. R., Taufiq, D. I., Mardiyati. 2018. The Fabrication of Yam Bean (Pachyrizous erosus) Starch Based Bioplastics. Inter. J. of Tech. 9(2): 345–352. doi: https://doi.org/10.14716/ijtech.v9i2.1129.

Harsojuwono, B. A., Mulyani, S., Arnata, I. W. 2019. Characteristics of Bio-Plastic Composites from The Modified Cassava Starch and Konjac Glucomannan. J. Appl. Hortic. 21(1): 101–107. doi: 10.37855/jah.2019.v21i01 .02

Ikhwanudin, Sembiring, K., Humaidi, S. 2018. Manufacture and Characterization of Bioplastics Based on Stone Banana Leaf Powder and Carboxymethyl Cellulose (CMC) Reinforced by Gum Arabic. [internet]. [cited 2022 Sep 6] Available from: https://repositori.usu.ac.id/handle/123456789/6383.

Ilhan, I., Turan, D., Gibson, I., Klooster, R. T. 2021. Understanding The Factors Affecting the Seal Integrity in Heat Sealed Flexible Food Packages: A Review. Packag. Technol. Sci. 34: 321–337. https://doi.org/10. 1002/pts.2564

Setiawan, I., Warsiki, and Hoerudin, E. 2018. Characterization of Cassava Peel Starch-Based Bioplastic Composites with Rice Husk Nanosilica. [internet]. [cited 2022 Dec 6] Available from: https://repository.ipb.ac.id/handle/ 123456789/ 92346.

Sari, N., Mairisya, M., Kurniasari, R., and Purnavita, S. 2019. Galactomannan-based Bioplastics Extracted from Coconut Pulp with A Mixture of Polyvinyl Alcohol. Methane. 15(2): 71–78. https://doi.org/10.14710/metana. v15i2.24892

Maghfirah, A., Sembiring, A. D., Iskandar, M., Rambe, M. A. A. J., Marlianto, E. 2018. Characterization of Edible Film Plastic Using Cassava Peel Starch (Manihot utilissima Pohl.) and Chicken Feather Keratin. JISTech 3(1): 12–17.

Harsojuwono, B. A., Mulyani, S., Arnata, I. W. 2020. Bio-plastic Composite Characteristics of the Modified Cassava Starch-Glucomannan in Variations of Types and Addition of Fillers. J. Appl. Hortic., 22(3): 154–163. doi: 10.37855/jah.2020. v22i03.32

Ayoola, W., Adeosun, S., Sanni, O., Oyetunji, A. 2012. Effect of Casting Mold on Mechanical Properties of 6063 Aluminum Alloy. J. of Eng. Sci. and Tech. 7(1): 89–96.

Zhang, X. L., Yu, G. K., Zou, W. B., Ji, Y. S., Liu, Y. Z., Cheng, J. L. 2018. Effect of Casting Methods on Microstructure and Mechanical Properties of ZM5 Space Flight Magnesium Alloy. China Foundry Res. and Develop. 15(6): 418–421. https://doi.org/10.1007/s41230-018-8098-y

Shabani, M. O., Baghani, A., Rahimipour, M. R., Heydari, F. 2021. Mechanical Properties as A Function of Casting Process of Aluminum–Silicon Alloy Matrix Composites. Res. Square. 1–24. doi: https://doi.org/10. 21203/rs.3.rs-589364/v1

Turan, D. 2021. Water Vapor Transport Properties of Polyurethane Films for Packaging of Respiring Foods. Food Eng. Rev. 13: 54–65. https://doi.org/10.1007/s12393-019-09205-z

Tsuji, T., Ishiaku, U. S., Mizoguchi, M., Hamada, H. The Effect of Heat Sealing Temperature on The Properties of OPP/CPP Heat Seal. I. Mechanical Properties. J. of App. Pol. Sci. 97(3): 753–760. doi: 10.1002/app.21320

Nyoto, M., Widiastuti, E., Suharianto. 2022. Addition of a Digital Temperature Indicator Tool on a Manual Hand Sealer for Optimizing Product Packaging at Politeknik Negeri Jember Agroindustry Management Laboratory. Lab. Pot. Develop. J. 1(1): 27–33. doi: 10.25047/plp. v1i1.3022.

Perez, J. J., and Francois, N. J. 2016. Chitosan-starch Bead Prepared by Ionotropic Gelation as Potential Matrices for Controlled Release of Fertilizers. Carb. Pol. 148: 134–142. doi: 10.1016/j.carbpol.2016.04.054

Fang, J., Fowler, P. A., Tomkinson, J., Hills, C. A. S. 2022. The Preparation and Characterization of a Series of Chemically Modified Potato Starches. Carb. Pol. 47: 245–252. doi: 10.1016/S0144-8617(01)00187-4

Yang, L., Guo, J., Yu, Y., An, Q., Wang, L., and Li, S. 2016. Hydrogen bonds of sodium alginate / Antarctic krill protein composite material. J. Carb. Pol. 142: 275–281. doi: 10.1016/j.carbpol.2016.01.050

Altaani, B., Obaidat, R., and Malkawi, W. 2020. Enhancement of Dissolution of Atorvastatin through Preparation of Polymeric Solid Dispersions Using Supercritical Fluid Technology. Res. Pharm. Sci. 15: 123–136. doi: 10.4103/1735-5362.283812.

Camacho, D. H., Tambio, S. J. M, Oliveros, M. I. A. 2011. Carrageenan Ionic Liquid Composite: Development of Polysaccharide-Based Solid Electrolyte System. Manila J. Sci. 6: 8–15.

Ren, L., Yan, X., and Zhou, J. 2017. Influence of Chitosan Concentration on Mechanical and Barrier Properties of Corn Starch/Chitosan Films. Int. J. Biol. Macromol. 105: 1636–1643. doi: 10.1016/j.ijbiomac.2017. 02.008

Dasbada, F. 2015. Functional Groups of Carbon Compounds. [internet]. [cited 2022 Sep 6] Available from: https://about-kimia.blogspot.com/2015/10/gugus-function-elektron-carbon.html.

Saito, T., Hayamizu, K., Yanagisawa, M., Yamamoto, O., Wasada, N., Someno, K., Kinugasa, S., Tanab, K., and Tamura, T. 2004. Integrated Spectral Data Base System for Organic Compounds. [internet]. [cited 2022 Dec 6] Available from: http://www.aist.go.jp/RIODB/SDBS/.

Downloads

Published

2024-01-15

How to Cite

Harsojuwono, B. A., Arnata, I. W., Hartiati, A., Gunam, I. B. W., & Setiyo, Y. (2024). DEVELOPMENT OF ECOFRIENDLY PLASTIC BAGS FROM BIOTHERMOPLASTIC COMPOSITE OF MODIFIED CASSAVA STARCH–GLUCOMANNAN-POLYVINYL ALCOHOL-POLYCAPROLACTONE. Jurnal Teknologi, 86(2), 17–25. https://doi.org/10.11113/jurnalteknologi.v86.19963

Issue

Section

Science and Engineering