THE EFFECT OF BILEAFLET MECHANICAL HEART VALVE DESIGNS ON BIOMECHANICAL BEHAVIOURS – A FINITE ELEMENT ANALYSIS
DOI:
https://doi.org/10.11113/jurnalteknologi.v86.20048Keywords:
Bileaflet, finite element analysis, heart valve, stress, total deformationAbstract
Heart valve replacement is a popular treatment modality for patients with valvular heart disease. One of the prominent issues of mechanical heart valve is blood clotting around the valve that could lead to operation failure. Different valve design affects the valve structural behaviour differently which could be associated to the valve leaflet movement and its attachment to the housing. This study aimed to analyse the stress and total deformation of a fixed and expandable heart valve designs under a closed and opened leaflet conditions using three-dimensional (3-D) finite element analysis (FEA). Geometrical valve models were created in SolidWorks 2020 and then exported into Ansys 2022 R2. All models were assigned with linearly elastic, isotropic, and homogenous properties. A pressure of 16 kPa was applied on the top (closed condition) and bottom (opened condition) surfaces of the leaflets. The results exhibited that the expandable design recorded about 98% and 8.6% higher stress than the fixed design under the closed and opened conditions, respectively. The expandable valve was also observed to generate approximately 186% and 182% greater total deformation compared to the fixed valve under the closed and opened conditions, respectively. Of the valve designs evaluated, the fixed valve was found to be more satisfactory. However, the expandable valve could also be of interest with relevant modifications imposed if the adverse functionality impacts are concerned.
References
Maganti, K., Rigolin, V. H., Sarano, M. E., and Bonow, R. O. 2010. Valvular Heart Disease: Diagnosis and Management. Mayo Clinic Proceedings. 85(5): 483-500.
Doi: http://dx.doi.org/10.4065/mcp.2009.0706.
Lee, A., Farajikhah, S., Crago, M., Mosse, L., Fletcher, D. F., Dehghani, F., Winlaw, D. S., and Naficy, S. 2022. From Scan to Simulation - A Novel Workflow for Developing Bioinspired Heart Valves. Journal of Biomechanical Engineering. 145(5): 1-11.
Doi: http://dx.doi.org/10.1115/1.4056353.
Loureiro-Ga, M., Veiga, C., Fdez-Manin, G., Jimenez, V. A., Calvo-Iglesias, F., and Iñiguez, A. 2020. A Biomechanical Model of the Pathological Aortic Valve: Simulation of Aortic Stenosis. Computer Methods in Biomechanics and Biomedical Engineering. 23(8): 303-311.
Doi: http://dx.doi.org/10.1080/10255842.2020.1720001.
Ghanbari, J., Dehparvar, A., and Zakeri, A. 2022. Design and Analysis of Prosthetic Heart Valves and Assessing the Effects of Leaflet Design on the Mechanical Attributes of the Valves. Frontiers in Mechanical Engineering. 8(February): 764034.
Kirov, H., Caldonazo, T., and Doenst, T. 2022. Treatment of Valvular Heart Disease in Young Patients - “Early Evidence” versus “Latest Fashion”. Journal of Cardiac Surgery. 37(8): 2375-2377.
Doi: http://dx.doi.org/10.1111/jocs.16607.
David Merryman, W., Shadow Huang, H.-Y., Schoen, F. J., and Sacks, M. S. 2006. The Effects of Cellular Contraction on Aortic Valve Leaflet Flexural Stiffness. Journal of Biomechanics. 39(1): 88-96.
DOI: http://dx.doi.org/10.1016/j.jbiomech.2004.11.008.
Kaneko, T. and Aranki, S. F. 2013. Anticoagulation for Prosthetic Valves. Thrombosis. 2013(346752): 1-4.
Doi: http://dx.doi.org/10.1155/2013/346752.
Pibarot, P. and Dumesnil, J. G. 2009. Prosthetic Heart Valves. Circulation. 119(7): 1034-1048.
Doi: http://dx.doi.org/10.1161/CIRCULATIONAHA.108.778886
Harris, C., Croce, B., and Cao, C. 2015. Tissue and Mechanical Heart Valves. Annals of Cardiothoracic Surgery. 4(4): 399.
Doi: http://dx.doi.org/10.3978/j.issn.2225-319X.2015.07.01.
Vongpatanasin, W., Hillis, L. D., and Lange, R. A. 1996. Prosthetic Heart Valves. New England Journal of Medicine. 335(6): 407-416.
Doi: http://dx.doi.org/10.1056/NEJM199608083350607.
Jaffer, I. H. and Whitlock, R. P. 2016. A Mechanical Heart Valve is the Best Choice. Heart Asia. 8(1): 62-64.
Doi: http://dx.doi.org/10.1136/heartasia-2015-010660.
Mohd Salleh, N., Zakaria, M. S., and Abd Latif, M. J. 2020. Reducing of Thrombosis in Mechanical Heart Valve through the Computational Method: A Review. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 65(2): 178-200.
Kwon, Y. J. 2008. Structural Analysis of a Bileaflet Mechanical Heart Valve Prosthesis with Curved Leaflet. Journal of Mechanical Science and Technology. 22(11): 2038-2047.
Doi: http://dx.doi.org/10.1007/s12206-008-0621-4.
Veronesi, F., Caiani, E. G., Sugeng, L., Fusini, L., Tamborini, G., Alamanni, F., Pepi, M., and Lang, R. M. 2012. Effect of Mitral Valve Repair on Mitral-Aortic Coupling: A Real-Time Three-Dimensional Transesophageal Echocardiography Study. Journal of the American Society of Echocardiography. 25(5): 524-531.
Doi: http://dx.doi.org/10.1016/j.echo.2012.02.002.
Wang, X., Qiu, J., Mu, C., Zhang, W., Xue, C., He, Y., Mu, Q., Fu, C., and Li, D. 2023. Causes and Treatment Strategies of Unilateral Leaflet Escape of Bileaflet Mechanical Prosthetic Heart Valves after Surgery: A Case Series. BMC Cardiovascular Disorders. 23(1): 73.
Doi: http://dx.doi.org/10.1186/s12872-023-03106-0.
Mohammadi, H. and Mequanint, K. 2011. Prosthetic Aortic Heart Valves: Modeling and Design. Medical Engineering & Physics. 33(2): 131-147.
Doi: http://dx.doi.org/10.1016/j.medengphy.2010.09.017.
Lee, H. and Taenaka, Y. 2006. Mechanism for Cavitation Phenomenon in Mechanical Heart Valves. Journal of Mechanical Science and Technology. 20(8): 1118-1124.
Doi: http://dx.doi.org/10.1007/BF02916011.
Feldman, T. E., Reardon, M. J., Rajagopal, V., Makkar, R. R., Bajwa, T. K., Kleiman, N. S., Linke, A., Kereiakes, D. J., Waksman, R., Thourani, V. H., Stoler, R. C., Mishkel, G. J., Rizik, D. G., Iyer, V. S., Gleason, T. G., Tchétché, D., Rovin, J. D., Buchbinder, M., Meredith, I. T., Götberg, M., Bjursten, H., Meduri, C., Salinger, M. H., Allocco, D. J., and Dawkins, K. D. 2018. Effect of Mechanically Expanded vs Self-Expanding Transcatheter Aortic Valve Replacement on Mortality and Major Adverse Clinical Events in High-Risk Patients with Aortic Stenosis: The REPRISE III Randomized Clinical Trial. JAMA. 319(1): 27-37.
Doi: http://dx.doi.org/10.1001/jama.2017.19132.
Chieffo, A., Buchanan, G. L., Van Mieghem, N. M., Tchetche, D., Dumonteil, N., Latib, A., van der Boon, R. M. A., Vahdat, O., Marcheix, B., Farah, B., Serruys, P. W., Fajadet, J., Carrié, D., de Jaegere, P. P. T., and Colombo, A. 2013. Transcatheter Aortic Valve Implantation with the Edwards SAPIEN Versus the Medtronic CoreValve Revalving System Devices: A Multicenter Collaborative Study: The PRAGMATIC Plus Initiative (Pooled-RotterdAm-Milano-Toulouse in Collaboration). Journal of the American College of Cardiology. 61(8): 830-836.
Doi: http://dx.doi.org/10.1016/j.jacc.2012.11.050.
Ishak, M. I., Shafi, A. A., Khor, C. Y., Rahim, W. M. F. W. A., Rosli, M. U., Zakaria, M. S., Jamalludin, M. R., and Nawi, M. A. M. 2018. The Effect of Different Dental Implant Thread Profiles on Bone Stress Distribution. AIP Conference Proceedings. 2030(1): 020057.
Doi: http://dx.doi.org/10.1063/1.5066698.
Ishak, M. I., Daud, R., Mohd Noor, S. N. F., Khor, C. Y., and Roslan, H. 2022. Assessment of Stress Shielding around a Dental Implant for Variation of Implant Stiffness and Parafunctional Loading using Finite Element Analysis. Acta of Bioengineering and Biomechanics. 24(3): 147-159.
Doi: http://dx.doi.org/10.37190/ABB-02129-2022-02.
Tan, J. S., Khor, C. Y., Ishak, M. I., Rosli, M. U., Jamalludin, M. R., Nawi, M. A. M., Mohamad Syafiq, A. K., and Abdul Aziz, M. S. 2019. Effect of Solder Joint Width to the Mechanical Aspect in Thermal Stress Analysis. IOP Conference Series: Materials Science and Engineering. 551(1): 012105.
Doi: http://dx.doi.org/10.1088/1757-899X/551/1/012105.
Rahim, W. M. F. W. A., Shahrizad, A. F. M., Khor, C. Y., Rosli, M. U., Jahidi, H., Ishak, M. I., Zakaria, M. S., Jamalludin, M. R., Nawi, M. A. M., Shahrin, S., Zainon, M. Z., and Nik-Ghazali, N. 2018. Turbulent Coolant Inside Cutting Tool to Control Heat Transfer during Cutting Process. AIP Conference Proceedings. 2030(1): 020130.
Doi: http://dx.doi.org/10.1063/1.5066771.
Nawi, M. A. M., Ishak, M. I., Rosli, M. U., Musa, N. M., Nor Azreen Ahmad Termizi, S., Khor, C. Y., and Faris, M. A. 2020. The Effect of Multi-staged Swirling Fluidized Bed on Air Flow Distribution. IOP Conference Series: Materials Science and Engineering. 864(1): 012194.
Doi: http://dx.doi.org/10.1088/1757-899X/864/1/012194.
Kiang-ia, A. and Chatpun, S. 2013. Mechanical Analysis of Mechanical Aortic Heart Valve: Trileaflet versus Bileaflet. The 6th 2013 Biomedical Engineering International Conference. Amphur Muang, Thailand. 23-25 October 2013. 1-4.
Hafizah Mokhtar, N. and Abas, A. 2018. Simulation of Blood flow in Different Configurations Design of Bi-leaflet Mechanical Heart Valve. IOP Conference Series: Materials Science and Engineering. 370(1): 012065.
Doi: http://dx.doi.org/10.1088/1757-899X/370/1/012065.
Chen, S., Zhang, B., Hu, J., Zheng, X., Qin, S., Li, C., Wang, S., Mao, J., and Wang, L. 2023. Bioinspired NiTi-Reinforced Polymeric Heart Valve Exhibiting Excellent Hemodynamics and Reduced Stress. Composites Part B: Engineering. 255(April): 110615.
Doi: http://dx.doi.org/10.1016/j.compositesb.2023.110615.
Qiu, D. and Azadani, A. N. 2022. Structural Analysis of Regional Transcatheter Aortic Valve Underexpansion and Its Implications for Subclinical Leaflet Thrombosis. International Journal for Numerical Methods in Biomedical Engineering. 38(10): e3641.
Doi: http://dx.doi.org/10.1002/cnm.3641.
Lee, C. S., Chandran, K. B., and Chen, L. D. 1996. Cavitation Dynamics of Medtronic Hall Mechanical Heart Valve Prosthesis: Fluid Squeezing Effect. Journal of Biomechanical Engineering. 118(1): 97-105.
Doi: http://dx.doi.org/10.1115/1.2795951.
Mitamura, Y., Hosooka, K., Matsumoto, T., Otaki, K., Sakai, K., Tanabe, T., Yuta, T., and Mikami, T. 1989. Development of a Ceramic Heart Valve. Journal of Biomaterials Applications. 4(1): 33-55.
Doi: http://dx.doi.org/10.1177/088532828900400103.
Wium, E., Jordaan, C. J., Botes, L., and Smit, F. E. 2019. Alternative Mechanical Heart Valves for the Developing World. Asian Cardiovascular and Thoracic Annals. 28(7): 431-443.
Doi: http://dx.doi.org/10.1177/0218492319891255.
Gloeckner, D. G., Bihir, K. L., and Sacks, M. S. 1999. Effects of Mechanical Fatigue on the Bending Properties of the Porcine Bioprosthetic Heart Valve. ASAIO Journal. 45(1): 59-63.
Vogl, B. J., Niemi, N. R., Griffiths, L. G., Alkhouli, M. A., and Hatoum, H. 2022. Impact of Calcific Aortic Valve Disease on Valve Mechanics. Biomechanics and Modeling in Mechanobiology. 21(1): 55-77.
Doi: http://dx.doi.org/10.1007/s10237-021-01527-4.
Jun, B. H., Saikrishnan, N., Arjunon, S., Yun, B. M., and Yoganathan, A. P. 2014. Effect of Hinge Gap Width of a St. Jude Medical Bileaflet Mechanical Heart Valve on Blood Damage Potential - An In Vitro Micro Particle Image Velocimetry Study. Journal of Biomechanical Engineering. 136(9): 091008.
Doi: http://dx.doi.org/10.1115/1.4027935.
Lijun, X., Hock, Y. J., and Hwang, N. H. 2003. Bubble Observation and Transient Pressure Signals in Mechanical Heart Valve Cavitation Study. Journal of Heart Valve Disease. 12(2): 235-44.
Chahine, G. L. 1994. Cavitation Dynamics at Microscale Level. Journal of Heart Valve Disease. 3 Suppl 1(April): S102-S116.
Wu, Z. J., Wang, Y., and Hwang, N. H. 1994. Occluder Closing Behavior: A Key Factor in Mechanical Heart Valve Cavitation. Journal of Heart Valve Disease. 3 Suppl 1(April): S25-S33; Discussion S33-S34.
Butterfield, M., Wheatley, D. J., Williams, D. F., and Fisher, J. 2001. A New Design for Polyurethane Heart Valves. Journal of Heart Valve Disease. 10(1): 105-110.
Travis, B. R., Andersen, M. E., and Fründ, E. T. 2008. The Effect of Gap Width on Viscous Stresses within the Leakage Across a Bileaflet Valve Pivot. Journal of Heart Valve Disease. 17(3): 309-316.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.