RECOMBINANT PROTEIN APPLICATION INDUCED DEFENSE MECHANISM IN HOST PLANT AGAINST PAPAYA DIEBACK DISEASE

Authors

  • Ros Azrinawati Hana Bakar ᵃDepartment of Plant Pathology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia ᵇBiotechnology & Nanotechnology Research Centre, Malaysian Agricultural Research & Development Institute, 43400 MARDI Head Quarter Serdang, Selangor, Malaysia https://orcid.org/0000-0003-4291-6757
  • Norliza Abu Bakar Biotechnology & Nanotechnology Research Centre, Malaysian Agricultural Research & Development Institute, 43400 MARDI Head Quarter Serdang, Selangor, Malaysia
  • Khairulmazmi Ahmad ᵃDepartment of Plant Pathology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia ᵈInstitute Tropical Agriculture & Food Security (ITAFOS), Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
  • Noor Azmi Shaharuddin Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
  • Mohd As’wad Abdul Wahab Department of Plant Pathology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
  • Nor Mustaiqazah Juri Biotechnology & Nanotechnology Research Centre, Malaysian Agricultural Research & Development Institute, 43400 MARDI Head Quarter Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v85.20092

Keywords:

Erwinia mallotivora, harpin protein, papaya dieback disease, systemic acquired resistance (SAR)

Abstract

Erwinia mallotivora is a Gram-negative bacterium that causes the papaya dieback disease in Malaysia. Currently, no effective disease control method is documented. In this regard, the adoption of harpin proteins in promoting plant defense mechanisms has been reported to be a promising control method for this disease. This study used, two recombinant harpin proteins, Hrp I and Hrp II, to control the disease in the glasshouse and field conditions. The results of foliar application in the glasshouse showed protective index of 70.8% and 35.7% for Hrp I and Hrp II, respectively. Meanwhile, the field trial for Hrp I showed a promising protection index of 72.3%. Moreover, the plant growth-promoting attributes were also significantly improved in the case of the Hrp I -treated plants. The effectiveness of Hrp I and II as inducers of systemic acquired resistance (SAR) was further validated by profiling defense-related genes using RT-qPCR analysis. The results showed that the treated papaya plants with Hrp I possess the highest expression of defense genes such as peroxidase, osmotin, and PRID in the glasshouse and field samples. In conclusion, the application of Hrp I is a promising disease control approach in managing papaya dieback disease in Malaysia.

References

Chávez-Pesqueira, M., and Núñez-Farfán, J. 2017. Domestication and Genetics of Papaya: A Review. Front Ecology Evolution. 5(155).

Doi: https://doi.org/10.3389/fevo.2017.00155.

Sekeli, R., Nazaruddin, N., Tamizi, A., Amin, N., Wee, C.-Y., Sarip, J., and Zulkifli, Z. 2019. Enhancing Eksotika Papaya Resistance to Dieback Disease through Quorum Quenching. Journal of Tropical Plant Physiology. 11(1): 1-9.

Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G., Handa, N., and Thukral, A. 2019. Worldwide Pesticide Usage and Its Impacts on Ecosystem. SN Applied Sciences. 1(1446).

Doi: https://doi.org/10.1007/s42452-019-1485-1.

Reynolds, G., Gordon, T., and McRoberts, N. 2019. Using Game Theory to Understand Systemic Acquired Resistance as a Bet-Hedging Option for Increasing Fitness When Disease Is Uncertain. Plants. 8(7): 219.

Doi: https://doi.org/10.3390/plants8070219.

Samsuddin, N., Abu Bakar, N., Shaharuddin, N., Azzeme, A., Laboh, R., Badrun, R., and Muhamad Nor, A. 2018. Establishment of Systemic Acquired Resistance (SAR) in Papaya by External Salicylic Acid Application as a Strategy to Control Dieback Disease. International Journal of Current Research. 10(10).

Doi: https://doi.org/10.24941/ijcr.32696.10.2018.

Abu Bakar, N., Sohaime, M., Juri, N. M., Badrun, R., and Sarip, J. 2018. Induction of Systemic Acquired Resistance in Papaya by Foliar Application of HrpN Recombinant Protein for Increased Resistance against Papaya Dieback Pathogen. Current Investigations in Agriculture and Current Research. 2(3).

Doi: https://doi.org/10.32474/CIACR.2018.02.000136.

Todd, J. N., Carreón-Anguiano, K. G., Islas-Flores, I., & Canto-Canché, B. 2022. Microbial Effectors: Key Determinants in Plant Health. Microorganisms. 10(10): 1980.

Doi: https://doi.org/10.3390/microorganisms10101980.

Zhang, S., Li, C., Han, Z., and Chen, D. 2022. Action Mechanisms of Effectors in Plant-Pathogen Interaction. International Journal of Molecular Sciences. 23(12): 6758.

Doi: https://doi.org/10.3390/ijms23126758.

Jiang, Y., Zhang, C.-X., Chen, R., and He, S. 2019. Challenging Battles of Plants with Phloem-feeding Insects and Prokaryotic Pathogens. Proceedings of the National Academy of Sciences (PNAS). 116(47): 23390-23397.

Doi: https://doi.org/10.1073/pnas.1915396116.

Vander Broek, C., and Stevens, J. 2017. Type III Secretion in the Melioidosis Pathogen Burkholderia pseudomallei. Frontiers in Cellular and Infection Microbiology. 7: 255.

Doi: https://doi.org/10.3389/fcimb.2017.00255.

Kamoun, S. 2007. Groovy Times: Filamentous Pathogen Effectors Revealed. Current Opinion in Plant Biology. 10(4): 358-365.

Doi: https://doi.org/10.1016/j.pbi.2007.04.017.

Pfeilmeier, S., Caly, D. L., and Malone, J. G. 2016. Bacterial Pathogenesis of Plants: Future Challenges from a Microbial Perspective: Challenges in Bacterial Molecular Plant Pathology. Molecular Plant Pathology. 17(8): 1298-1313.

Doi: https://doi.org/10.1111/mpp.12427.

Abu-Bakar, N., Juri, N. M., Abu-Bakar, R. A. H., Sohaime, M. Z., Badrun, R., Sarip, J., Hassan, M. A., and Ahmad, K. 2021. Recombinant Protein Foliar Application Activates Systemic Acquired Resistance and Increases Tolerance against Papaya Dieback Disease. Asian Journal of Agriculture and Rural Development. 11(1): 1-9.

Doi: https://doi.org/10.18488/journal.ajard.2021.111.1.9.

Seleim, M. A., Abo-Elyousr, K. A., Abd-El-Moneem, K. M., and Saead, F. A. 2014. First Report of Bacterial Wilt Caused by Ralstonia Solanacearum Biovar 2 Race 1 on Tomato in Egypt. The Plant Pathology Journal. 30(3): 299

Doi: https://doi.org/10.5423/PPJ.NT.10.2013.0101.

Lessler, J., Azman, A. S., McKay, H. S., & Moore, S. M. 2017. What is a Hotspot Anyway? The American Journal of Tropical Medicine and Hygiene. 96(6): 1270-1273.

Doi: https://doi.org/10.4269/ajtmh.16-0427.

Campbell, C. L., & Madden, L. V. 1990. Introduction to Plant Disease Epidemiology. John Wiley & Sons.

Groth, J. V., Ozmon, E. A., & Busch, R. H. 1999. Repeatability and Relationship of Incidence and Severity Measures of Scab of Wheat Caused by Fusarium Graminearum In Inoculated Nurseries. Plant Disease. 83(11): 1033-1038.

Doi: https://doi.org/10.1094/PDIS.1999.83.11.1033.

Abd Samat, N. M. A., Ahmad, S., Awang, Y., Bakar, R. A. H., and Hakiman, M. 2020. Alterations in Herbage Yield, Antioxidant Activities, Phytochemical Contents, and Bioactive Compounds of Sabah Snake Grass (Clinacanthus Nutans L.) with Regards to Harvesting Age and Harvesting Frequency. Molecules. 25(12): 2833.

Doi: https://doi.org/10.3390/molecules25122833.

Abu-Bakar, N., Juri, N. M., Abu-Bakar, R. A. H., Sohaime, M. Z., Badrun, R., Sarip, J., Hassan, M. A., & Ahmad, K. 2021. Recombinant Protein Foliar Application Activates Systemic Acquired Resistance and Increases Tolerance against Papaya Dieback Disease. Asian Journal of Agriculture and Rural Development. 11(1): 1-9.

Doi: https://doi.org/10.18488/journal.ajard.2021.111.1.9.

Waznul Adly M. Z., Alizah, Z., Maheswary, V. and Zuraida, A. R. 2010. Validation of Housekeeping Genes for Quantitative Real-time PCR in Malaysian Papaya var Eksotika I (Carica papaya). Proceedings of UMS Biotechnology Symposium IV, Kota Kinabalu, Sabah. Kota Kinabalu: UMS.

Schmittgen, T. D., and Livak, K. J. 2008. Analyzing Real-time PCR Data by the Comparative CT Method. Nature Protocols. 3(6): 1101-1108.

Doi: https://doi.org/10.1038/nprot.2008.73.

Bocsanczy, A. M., Nissinen, R. M., OH, C. S., and Beer, S. V. 2008. HrpN of Erwinia Amylovora Functions in the Translocation of DspA/E into Plant Cells. Molecular Plant Pathology. 9(4): 425-434.

Doi: https://doi.org/10.1111/j.1364-3703.2008.00471.x.

Amil-Ruiz, F., Blanco-Portales, R., Munoz-Blanco, J., and Caballero, J. L. 2011. The Strawberry Plant Defense Mechanism: A Molecular Review. Plant and Cell Physiology. 52(11): 1873-1903.

Doi: https://doi.org/10.1093/pcp/pcr136.

Sekeli, R., Hamid, M. H., Razak, R. A., Wee, C. Y., and Ong-Abdullah, J. 2018. Malaysian Carica papaya L. var. Eksotika: Current Research Strategies Fronting Challenges. Frontier Plant Science. 9: 1380.

Doi: https://doi.org/10.3389/fpls.2018.01380.

Mohd Azhar, H., Mohd Zulfa., and Abdul Razak, M. 2020. Field Performance of Selected Papaya Hybrids for Tolerance to Dieback Disease. Journal of Tropical Agriculture and Food Science. 48(1).

Liu, Y., Zhou, X., Liu, W. et al. 2020. HpaXpm, a Novel Harpin of Xanthomonas phaseoli pv. manihotis, Acts as an elicitor with High Thermal Stability, Reduces Disease, and Promotes Plant Growth. BMC Microbiol. 20(4). https://doi.org/10.1186/s12866-019-1691-4.

Chen, L., Zhang, S. J., Zhang, S. S., Qu, S., Ren, X., Long, J., and Dong, H. 2008. A Fragment of the Xanthomonas oryzae pv. oryzicola Harpin HpaGXooc Reduces Disease and Increases Yield of Rice in Extensive Grower Plantings. Phytopathology. 98(7): 792-802.

Doi: https://doi.org/10.1094/PHYTO-98-7-0792.

Maktar, N. H., Kamis, S., Mohd Yusof, F. Z., and Hussain, N. H. 2008. Erwinia papayae Causing Papaya Dieback in Malaysia. Plant Pathology. 57: 774.

DOI: https://doi.org/10.1111/j.1365-3059.2008.01877.x.

Mat Amin, N., Bunawan, H., Redzuan, R. A., and Jaganath, I. B. S. 2011. Erwinia mallotivora sp., A New Pathogen of Papaya (Carica papaya) in Peninsular Malaysia. International Journal of Molecular Science. 12: 39-45.

Doi: https://doi.org/10.3390/ijms12010039.

Wang, D., Wang, B., Wang, J., Wang, S., Wang W., and Niu, Y. 2020. Exogenous Application of Harpin Protein Hpa1 onto Pinellia ternata Induces Systemic Resistance Against Tobacco Mosaic Virus. Phytopathology. 110: 1189-1198.

Doi: https://doi.org/10.1094/PHYTO-12-19-0463-R.

Chakraborty, J., Ghosh, P., and Das, S. 2017. Autoimmunity in Plants. Planta. 248(4): 751-767.

Doi: https://doi.org/10.1007/s00425-018-2956-0.

Cai, Z., Wang, Z., Yue, C., Sun, A., and Shen, Y. 2021. Efficient Expression and Purification of Soluble HarpinEa Protein by Translation Initiation Region Codon Optimization. Protein Expression and Purification. 188: 105970.

Doi: https://doi.org/10.1016/j.pep.2021.105970.

Noor Shahida, Y., Awang, Y., Sijam, K., Noriha, M. A., and Satar, M. G. M. 2016. Biochemical Changes and Leaf Photosynthesis of Erwinia mallotivora Infected Papaya (Carica papaya) Seedlings. American Journal of Plant Physiology. 11: 12-22.

Doi: https://doi.org/10.3923/ajpp.2016.12.22.

Fallahi, E. 2021. Harpin Protein Influence on Fruit Quality Attributes, Ethylene, Respiration, and Minerals in Apples. American Journal of Plant Sciences. 12(8): 1236-1245.

Doi: https://doi.org/10.4236/ajps.2021.128086.

Kretschmer, M., Damoo, D., Djamei, A., and Kronstad, J. 2020. Chloroplasts and Plant Immunity: Where are the Fungal Effectors? Pathogens. 9(1): 19.

Doi: https://doi.org/10.3390/pathogens9010019.

Yang, F., Xiao, K., Pan, H., & Liu, J. 2021. Chloroplast: The Emerging Battlefield in Plant–Microbe Interactions. Frontiers in Plant Science. 12: 218.

Doi: https://doi.org/10.3389/fpls.2021.637853.

Abd Elhady, S. I., & Abdulwahab, A. M. 2019. The Role of Green Energy as a Filter in Reviving the Industrial Spaces using the Green Microalgae Technology as a Landscape Feature (Rainbow of the Land)(A Practical Case Study of Industrial Area, German)-Article Review. African Journal of Biological Sciences. 15(1): 269-287.

Doi: https://doi.org/10.21608/ajbs.2019.194858.

Zhao, B., Erwin, A., & Xue, B. 2018. How Many Differentially Expressed Genes: A Perspective from the Comparison of Genotypic and Phenotypic Distances. Genomics. 110(1): 67-73.

Doi: https://doi.org/10.1016/j.ygeno.2017.08.007.

Diaz, I. 2018. Plant Defense Genes against Biotic Stresses. International Journal of Molecular Sciences. 19(8): 2446.

Doi: https://doi.org/10.3390/ijms19082446.

Husaini, A. M., and Abdin, M. Z. 2008. Overexpression of Tobacco Osmotin Gene Leads to Salt Stress Tolerance in Strawberry (Fragaria× ananassa Duch.) Plants. Indian Journal of Biotechnology. 7: 465-471.

Viktorova, J., Rehorova, K., Musilova, L., Suman, J., Lovecka, P., and Macek, T. 2019. New Findings in Potential Applications of Tobacco Osmotin. Protein Expression and Purification. 129: 84-93.

Doi: https://doi.org/10.1016/j.pep.2016.09.008.

Bashir, M. A., Silvestri, C., Ahmad, T., Hafiz, I. A., Abbasi, N. A., Manzoor, A., and Rugini, E. 2020. Osmotin: A Cationic Protein Leads to Improve Biotic and Abiotic Stress Tolerance in Plants. Plants. 9(8): 992.

Doi: https://doi.org/10.3390/plants9080992.

Alhaithloul, H. A., Soliman, M. H., Ameta, K. L., El-Esawi, M. A., and Elkelish, A. 2019. Changes in Ecophysiology, Osmolytes, and Secondary Metabolites of the Medicinal Plants of Mentha piperita and Catharanthus roseus Subjected to Drought and Heat Stress. Biomolecules. 10(1): 43.

Doi: https://doi.org/10.3390/biom10010043.

Ullah, A., Hussain, A., Shaban, M., Khan, A. H., Alariqi, M., Gul, S., and Munis, M. F. H. 2018. Osmotin: A Plant Defense Tool against Biotic and Abiotic Stresses. Plant Physiology and Biochemistry. 123: 149-159.

Doi: https://doi.org/10.1016/j.plaphy.2017.12.012.

Dana, M. D. L. M., Pintor-Toro, J. A., & Cubero, B. 2006. Transgenic Tobacco Plants Overexpressing Chitinases of Fungal Origin Show Enhanced Resistance to Biotic and Abiotic Stress Agents. Plant Physiology. 142(2): 722-730.

Doi: https://doi.org/10.1104/pp.106.086140.

Datta, K., Velazhahan, R., Oliva, N., Ona, I., Mew, T., Khush, G. S., and Datta, S. K. 1999. Over-expression of the Cloned Rice Thaumatin-like Protein (PR-5) Gene in Transgenic Rice Plants Enhances Environmental Friendly Resistance to Rhizoctonia solani Causing Sheath Blight Disease. Theoretical and Applied Genetics. 98(6): 1138-1145.

Sarowar, S., Kim, Y. J., Kim, E. N., Kim, K. D., Hwang, B. K., Islam, R., and Shin, J. S. 2005. Overexpression of a Pepper Basic Pathogenesis-related Protein 1 Gene in Tobacco Plants Enhances Resistance to Heavy Metal and Pathogen Stresses. Plant Cell Reports. 24(4): 216-224.

Doi: https://doi.org/10.1007/s00299-005-0928-x.

Linthorst, H. J., and Van Loon, L. C. 2008. Pathogenesis‐related Proteins of Plants. Critical Reviews in Plant Sciences. 10(2): 123-150.

Doi: https://doi.org/10.1080/07352689109382309.

Cutt, J. R., & Klessig, D. F. 1992. Pathogenesis-related Proteins. In Genes Involved in Plant Defense. Springer. 209-243.

Doi: https://doi.org/10.1007/978-3-7091-6684-0_9.

Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., and Grover, A. 2018. Pathogenesis-related Proteins and Peptides as Promising Tools for Engineering Plants with Multiple Stress Tolerance. Microbiological Research. 212: 29-37.

Doi: https://doi.org/10.1016/j.micres.2018.04.008.

Dzhavakhiya, V. G., Ozeretskovskaya, O. L., and Zinovyeva, S. V. 2007. Immune response. In Comprehensive and Molecular Phytopathology. Elsevier. 265-314.

Durner, J., Shah, J., and Klessig, D. F. 1997. Salicylic Acid and Disease Resistance in Plants. Trends in Plant Science. 2(7): 266-274.

Doi: https://doi.org/10.1016/S1360-1385(97)86349-2x.

Hu, Z., Zhang, H., and Shi, K. 2018. Plant Peptides in Plant Defense Responses. Plant Signaling & Behavior. 13(8).

Doi: https://doi.org/10.1080/15592324.2018.1475175.

De León, I. P., and Montesano, M. 2013. Activation of Defense Mechanisms against Pathogens in Mosses and Flowering Plants. International Journal of Molecular Sciences. 14(2): 3178-3200.

Doi: https://doi.org/10.3390/ijms14023178.

Downloads

Published

2023-09-17

Issue

Section

Science and Engineering

How to Cite

RECOMBINANT PROTEIN APPLICATION INDUCED DEFENSE MECHANISM IN HOST PLANT AGAINST PAPAYA DIEBACK DISEASE . (2023). Jurnal Teknologi, 85(6), 187-199. https://doi.org/10.11113/jurnalteknologi.v85.20092