FERRIHYDRITE-CHITOSAN NANOCOMPOSITE AS A RECYCLABLE FLOCCULANT FOR PALM OIL MILL EFFLUENT

Authors

  • Juliana Jumadi Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
  • Azlan Kamari Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
  • Nurulsaidah Abdul Rahim Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia https://orcid.org/0000-0001-5669-234X
  • Norjan Yusof Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
  • I. Wayan Sutapa Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pattimura, Ambon Maluku 97233, Indonesia
  • Sunardi Sunardi Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Lambung Mangkurat, South Kalimantan 70714, Indonesia https://orcid.org/0000-0002-8537-4778

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.20187

Keywords:

Ferrihydrite-chitosan nanocomposite, flocculation, palm oil mill effluent, recyclable flocculant, wastewater treatment

Abstract

In the present study, ferrihydrite-chitosan nanocomposite (FCN) was successfully produced by co-precipitation method and used for the first time as a recyclable flocculant for pre-treatment of palm oil mill effluent (POME). The physicochemical properties of FCN were studied using Raman spectrometer, Scanning Electron Microscope (SEM) and Thermogravimetric Analyser (TGA). The feasibility of FCN to remove total suspended solids (TSS), turbidity, chemical oxygen demand (COD), and, oil and grease (O&G) from POME was investigated using a jar test method. The optimum conditions for contaminant removal from POME were determined by varying the experimental parameters such as flocculant dosage, solution pH and settling time. The results obtained showed that FCN, at a dosage of 1.5 g/L, a contact time of 60 min and pH of 5.0 gave a highest reduction of turbidity, TSS, COD and O&G levels by 72.38%, 77.32%, 71.60% and 53.40%, respectively. Besides that, FCN exhibited a better flocculation performance as compared to alum and chitosan. After three cycles of flocculation/deflocculation process, FCN retained satisfying flocculation efficiency and flocculants recovery in the range of 80-83% and 43.2-78.6%, respectively. Combination of charge neutralisation and polymer bridging was the main key mechanism of interaction between FCN and POME contaminants. The synergy effect between iron oxide/oxyhydroxide nanoparticle and chitosan has increased the physicochemical properties and flocculation performance of the FCN nanocomposite. Overall, FCN nanocomposite can be used an alternative flocculant for POME treatment.

References

Malaysian Palm Oil Council. 2022. Nutrition & Health. https://mpoc.org.my/nutrition-health.

Kumaran, P., Hephzibah, D., Sivasankari, R., Saifuddin, N. and Sahamsuddin A. H. 2016. A Review on Industrial Scale Anaerobic Digestion Systems Deployment in Malaysia: Opportunities and Challenges. Renewable and Sustainable Energy Reviews. 56: 929-940. https://doi.org/10.1016/j.rser.2015.11.069.

Adela, B. N., Muzzammil, N., Loh, S. K. and Choo, Y. M. 2014. Characteristic of Palm Oil Mill Effluent (POME) in an Anaerobic Biogas Digester. Asian Journal of Mircobiology, Biotechnology & Environmental Sciences. 16(1): 225-231.

Jumadi, J., Kamari, A., Hargreaves, J. S. J. and Yusof. N. 2020. A Review of Nano-based Materials used as Flocculants for Water Treatment. International Journal of Environmental Science and Technology. 17: 3571-3594. https://doi.org/10.1007/s13762-020-02723-y.

Bala, J. D., Lalung, J., Al-Gheethi, A. A. S., Kaizar, H. and Ismail, N. 2018. Reduction of Organic Load and Biodegradation of Palm Oil Mill Effluent by Aerobic Indigenous Mixed Microbial Consortium Isolated from Palm Oil Mill Effluent (POME). Water Conservation Science and Engineering. 3(3): 139-156. https://doi.org/10.1007/s41101-018-0043-9.

Bashir, I., Lone, F. A., Bhat, R. A., Mir, S. A., Dar, Z. A. and Dar, S. A. 2020. Concerns and Threats of Contamination on Aquatic Ecosystems. Bioremediation and Biotechnology: Sustainable Approaches to Pollution Degradation. 1-26. https://doi.org/10.1007/978-3-030-35691-0_1.

Kamyab, H., Chelliapan, S., Din, M. F. M., Rezania, S., Khademi, T. and Kumar, A. 2018. Palm Oil Mill Effluent as an Environmental Pollutant. In (Ed.). Palm Oil. IntechOpen. https://doi.org/10.5772/intechopen.75811.

Chan, Y. J. and Chong M. F. 2019. Palm Oil Mill Effluent (POME) Treatment - Current Technologies, Biogas Capture and Challenges. In: Foo D., Tun Abdul Aziz M. (eds). Green Technologies for the Oil Palm Industry. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-2236-5_4.

Mohammad, S., Baidurah, S., Kobayashi, T., Ismail, N., and Leh, C. P. 2021. Palm Oil Mill Effluent Treatment Processes—A Review. Processes. 9(5): 739. https://doi.org/10.3390/pr9050739.

Jumadi, J., Kamari, A., Abdul Rahim, N., Yusof, N., and Fatimah, I. 2022. Remediation of Palm Oil Mill Effluent (POME) using Selected Biological Techniques: A Mini Review. Jurnal Teknologi. 84(5): 93-103. https://doi.org/10.11113/jurnalteknologi.v84.18013.

Yusoff, M. S., Aziz, H. A., Zamri, M. F. M. A., Suja’, F., Abdullah, A. Z. and Basri, N. E. A. 2018. Floc Behavior and Removal Mechanisms of Cross-linked Durio zibethinus Seed Starch as a Natural Flocculant for Landfill Leachate Coagulation-Flocculation Treatment. Waste Management. 74: 362-372. https://doi.org/10.1016/j.wasman.2018.01.016.

Halakarni, M., Mahto, A., Aruchamy, K., Mondal, D. and Nataraj, S. K. 2020. Developing Helical Carbon Functionalized Chitosan-based Loose Nanofiltration Membranes for Selective Separation and Wastewater Treatment. Chemical Engineering Journal. 417: 127911. https://doi.org/10.1016/j.cej.2020.127911.

Brion-Roby, R., Gagnon, J., Deschênes, J. -S. and Chabot, B. 2018. Investigation of Fixed Bed Adsorption Column Operation Parameters using a Chitosan Material for Treatment of Arsenate Contaminated Water. Journal of Environmental Chemical Engineering. 6(1): 505-511. https://doi.org/10.1016/j.jece.2017.12.032.

Halim, A. L. A., Kamari, A. and Phillip, E. 2018. Chitosan, Gelatin and Methylcellulose Films Incorporated with Tannic Acid for Food Packaging. International Journal of Biological Macromolecules. 120(Part A): 1119-1126. https://doi.org/10.1016/j.ijbiomac.2018.08.169.

Yusoff, S. N. M., Kamari, A., Ishak, S. and Halim, A. L. A. 2018. N-hexanoyl-O-glycol Chitosan as a Carrier Agent for Water-insoluble Herbicide. Journal of Physics: Conference Series, 1097: 012053.

França, D., Medina, Â. F., Messa, L. L., Souza, C. F. and Faez, R. 2018. Chitosan Spray-dried Microcapsule and Microsphere as Fertilizer Host for Swellable − Controlled Release Materials. Carbohydrate Polymers. 196: 47-55. https://doi.org/10.1016/j.carbpol.2018.05.014.

Tripathi, N., Choppala, G., Singh, R. S. and Hills, C. D. 2017. Impact of Modified Chitosan on Pore Water Bioavailability of Zinc in Contaminated Soil. Journal of Geochemical Exploration. 186: 94-99. https://doi.org/10.1016/j.gexplo.2017.12.005.

Yang, Z., Miao, H., Rui, Z. and Ji, H. 2019. Enhanced Formaldehyde Removal from Air using Fully Biodegradable Chitosan Grafted β-cyclodextrin Adsorbent with Weak Chemical Interaction. Polymers. 11(2): 276. https://doi.org/10.3390/polym11020276.

Chik, C. E. N. C. E., Kurniawan, S. B., Shukri, Z. N. A., Terkula, I. B., Wahab, F., Endut, A., Lananan, F., Hasan, H. A., Abdullah, S. R. S., and Kasan, N. A. 2023. Chitosan Coagulant: Coagulation/Flocculation Studies on Turbidity Removal from Aquaculture Wastewater by Response Surface Methodology. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-023-04989-4.

Saiyad, M., Shah, N., Joshipura, M., Dwivedi, A., and Pillai, S. 2023. Chitosan and its Derivatives in Wastewater Treatment Application. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.10.157.

Abdullah, N. H., Shameli, K., Abdullah, E. C. and Abdullah, L. C. 2018. Solid Matrices for fabrication of magnetic iron oxide nanocomposites: Synthesis, Properties, and Application for the Adsorption of Heavy Metal Ions and Dyes. Composites Part B: Engineering. 162: 538-568. https://doi.org/10.1016/j.compositesb.2018.12.075.

Gutierrez, A. M., Dziubla, T. D. and Hilt, J. Z. 2017. Recent Advances on Iron Oxide Magnetic Nanoparticles as Sorbents of Organic Pollutants in Water and Wastewater Treatment. Reviews on Environmental Health. 32(1-2): 111-117. https://doi.org/10.1515/reveh-2016-0063.

Chaiyarat, A. and Saejung, C. 2022. Photosynthetic Bacteria with Iron Oxide Nanoparticles as Catalyst for Cooking Oil Removal and Valuable Products Recovery with Heavy Metal Co-contamination. Waste Management. 140: 81-89. https://doi.org/10.1016/j.wasman.2022.01.005.

Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A. R., Ali, J. S. and Hussain, A. 2016. Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnology, Science and Applications. 9: 49-67. https://dx.doi.org/10.2147%2FNSA.S99986.

Wu, W., He, Q. and Jiang, C. 2008. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Research Letters. 3: 397. https://doi.org/10.1007/s11671-008-9174-9.

Chisty, A. H., Rahman, M. M. 2022. Insight Of Iron Oxide-Chitosan Nanocomposites for Drug Delivery. In: Pandey, L.M., Hasan, A. (eds). Nanoscale Engineering of Biomaterials: Properties and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-16-3667-7_22.

Singh, S., Singh, G., and Bala, N. 2021. Synthesis and Characterization of Iron Oxide-hydroxyapatite-chitosan Composite Coating and Its Biological Assessment for Biomedical Applications. Progress in Organic Coatings. 150: 106011. https://doi.org/10.1016/j.porgcoat.2020.106011.

Samejo, S., Baig, J. A., Uddin, S., Kazi, T. G., Afridi, H. I., Hol, A., Ali, F. I., Hussain, S., Akhtar, K., Perveen, S., and Bhutto, A. A. 2023. Green Synthesis of Iron Oxide Nanobiocomposite for the Adsorptive Removal of Heavy Metals from the Drinking Water. Materials Chemistry and Physics. 303: 127807. https://doi.org/10.1016/j.matchemphys.2023.127807.

Sarojini, G., Kannan, P., Rajamohan, N., and Rajasimman, M. 2023. Bio-fabrication of Porous Magnetic Chitosan/Fe3O4 Nanocomposite using Azolla Pinnata for Removal of Chromium- Parametric Effects, Surface Characterization and Kinetics. Environmental Research. 218: 114822. https://doi.org/10.1016/j.envres.2022.114822.

Jumadi, J., Kamari, A., Rahim, N. A., Wong, S. T. S., Yusoff, S. N. M., Ishak, S., Abdulrasool, M. M., and Kumaran, S. 2019. Removal of Methylene Blue and Congo Red by Magnetic Chitosan Nanocomposite: Characterization and Adsorption Studies. Journal of Physics: Conference Series. 1397: 012027. https://doi.org/10.1088/1742-6596/1397/1/012027.

Villacís-García, M., Ugalde-Arzate, M., Vaca-Escobar, K., Villalobos, M., Zanella, R., and Martínez-Villegas, N. 2015. Laboratory Synthesis of Goethite and Ferrihydrite of Controlled Particle Sizes. Boletín de la Sociedad Geológica Mexicana. 67(3): 433-446.

Pham, X. N., Nguyen, T. P., Pham, T. N., Tran, T. T. N., & Tran, T. V. T. 2016. Synthesis and Characterization of Chitosan-coated Magnetite Nanoparticles and Their Application in Curcumin Drug Delivery. Advances in Natural Sciences: Nanoscience and Nanotechnology. 7: 045010.

Saritha, V., Srinivas, N. and Srikanth Vuppala, N. V. 2017. Analysis and Optimization of Coagulation and Flocculation Process. Applied Water Science. 7(1): 451-460. https://doi.org/10.1007/s13201-014-0262-y.

Maćczak, P., Kaczmarek, H. and Ziegler-Borowska, M. 2020. Recent Achievements in Polymer Bio-based Flocculants for Water Treatment. Materials. 13(18): 3951. https://doi.org/10.3390/ma13183951.

Hassan, M. A. A. and Puteh, M. H. 2007. Pre-treatment of Palm Oil Mill Effluent (POME): A Comparison Study using Chitosan and Alum. Malaysian Journal of Civil Engineering. 19(2): 128-141. https://doi.org/10.11113/mjce.v19.15747.

Ahmed, I., Mondol, M. M. H., Lee, H. J. and Jhung, S. H. 2021. Application of Metal‐organic Frameworks in Adsorptive Removal of Organic Contaminants from Water, Fuel and Air. Chemistry - An Asian Journal. 16(3): 185-196. https://doi.org/10.1002/asia.202001365.

Nizamuddin, S., Siddiqui, M. T. H., Mubarak, N. M., Baloch, H. A., Abdullah, E. C., Mazari, S. A., Griffin, G. J., Srinivasan, M. P. and Tanksale, A. 2019. Iron Oxide Nanomaterials for the Removal of Heavy Metals and Dyes from Wastewater. Nanoscale Materials in Water Purification. 447-472. https://doi.org/10.1016/B978-0-12-813926-4.00023-9.

Da Silva, S. B., Batista, G. L. and Santin, C. K. 2019. Chitosan for Sensors and Electrochemical Applications. Chitin and Chitosan: Properties and Application. 461-476. https://doi.org/10.1002/9781119450467.ch18.

Guo, X., Qu, L., Zhu, S., Tian, M., Zhang, X., Sun, K. and Tang, X. 2015. Preparation of Three-dimensional Chitosan-graphene Oxide Aerogel for Residue Oil Removal. Water Environment Research. 88(8): 768-778. https://doi.org/10.2175/106143016x14609975747207.

Ordaz-Díaz, L. A., Valle-Cervantes, S., Rodríguez-Rosales, J., Bailón-Salas, A. M., Madrid-Del Palacio, M., Torres-Fraga, K. and De la Peña-Arellano, L. A. 2017. Zeta Potential as a Tool to Evaluate the Optimum Performance of a Coagulation-flocculation Process for Wastewater Internal Treatment for Recirculation in the Pulp and Paper Process. BioResources, 12(3): 5953-5969. https://doi.org/10.15376/biores.12.3.5953-5969.

Ganapathy, B., Yahya, A. and Ibrahim, N. 2019. Bioremediation of palm oil mill effluent (POME) using indigenous Meyerozyma guilliermondii. Environmental Science and Pollution Research. 26(11): 11113-11125. https://doi.org/10.1007/s11356-019-04334-8.

Yu, W., Wang, C., Wang, G. and Feng, Q. 2020. Flocculation Performance and Kinetics of Magnetic Polyacrylamide Microsphere under Different Magnetic Field Strengths. Journal of Chemistry. 2020: 1579424. https://doi.org/10.1155/2020/1579424.

Sivashankari, P. R. and Prabaharan, M. 2017. Deacetylation Modification Techniques of Chitin and Chitosan. Chitosan Based Biomaterials. 1: 117-133. https://doi.org/10.1016/B978-0-08-100230-8.00005-4.

Nirmala, R., Il, B. W., Navamathavan, R., El-Newehy, M. H. and Kim, H. Y. 2011. Preparation and Characterizations of Anisotropic Chitosan Nanofibers via Electrospinning. Macromolecular Research. 19(4): 345-350. https://doi.org/10.1007/s13233-011-0402-2.

Das, S. and Hendry, M. J. 2011. Application of Raman Spectroscopy to Identify Iron Minerals Commonly Found in Mine Wastes. Chemical Geology. 290(3-4): 101-108. https://doi.org/10.1016/j.chemgeo.2011.09.001.

Rout, K., Mohapatra, M. and Anand, S. 2012. 2-line Ferrihydrite: Synthesis, Characterization and its Adsorption Behavior for Removal of Pd(II), Cd(II), Cu(II) and Zn(II) from Aqueous Solutions. Dalton Transactions. 41: 3302-12. https://doi.org/10.1039/C2DT11651K.

Hanesch, M. 2009. Raman Spectroscopy of Iron Oxides and (oxy)hydroxides at Low Laser Power and Possible Applications in Environmental Magnetic Studies. Geophysical Journal International. 177(3): 941-948. https://doi.org/10.1111/j.1365-246X.2009.04122.x.

Mazzetti, L. and Thistlethwaite, P. J. 2002. Raman Spectra and Thermal Transformations of Ferrihydrite and Schwertmannite. Journal of Raman Spectroscopy. 33(2): 104-111. https://doi.org/10.1002/jrs.830.

Kunze, F., Kuns, S., Spree, M., Hülser, T., Schulz, C., Wiggers, H. and Schnurre, S. M. 2019. Synthesis of Silicon Nanoparticles in a Pilot-plant-scale Microwave Plasma Reactor: Impact of Flow Rates and Precursor Concentration on the Nanoparticle Size and Aggregation. Powder Technology. 342: 880-886. https://doi.org/10.1016/j.powtec.2018.10.042.

Jakubowska, E., Gierszewska, M., Nowaczyk, J., and Olewnik-Kruszkowska, E. 2020. Physicochemical and Storage Properties of Chitosan-based Films Plasticized with Deep Eutectic Solvent. Food Hydrocolloids. 108: 106007. https://doi.org/10.1016/j.foodhyd.2020.106007.

Grzybek, P., Jakubski, Ł., and Dudek, G. 2022. Neat Chitosan Porous Materials: A Review of Preparation, Structure Characterization and Application. International Journal of Molecular Sciences. 23(17): 9932. https://doi.org/10.3390/ijms23179932.

Rabel, A. M., Jayanthi, V., Raj, N. N., Ramachandran, D. and Brijitta, J. 2013. Synthesis and Characterization of Chitosan-coated Iron Oxide Nanoparticles. International Conference on Advanced Nanomaterials & Emerging Engineering Technologies. 569-571. https://doi.org/10.1109/ICANMEET.2013.6609367.

Asadpour, R., Sapari, N. B., Isa, M. H. and Orji, K. U. 2014. Enhancing the Hydrophobicity of Mangrove Bark by Esterification for Oil Adsorption. Water Science and Technology. 70(7): 1220-1228. https://doi.org/10.2166/wst.2014.355.

Bala, J. D., Lalung, J. and Ismail, N. 2014. Biodegradation of Palm Oil Mill Effluent (POME) by Bacterial. International Journal of Scientific and Research Publications. 4(3): 1-10. http://repository.futminna.edu.ng:8080/jspui/handle/123456789/9852.

Xing, Y., Li, X., Guo, X., Li, W., Chen, J., Liu, Q., Xu, Q., Wang, Q., Yang, H., & Bi, X. 2020. Effects of Different TiO2 Nanoparticles Concentrations on the Physical and Antibacterial Activities of Chitosan-based Coating Film. Nanomaterials. 10(7): 1365. https://doi.org/10.3390/nano10071365.

Bandi, S., Hastak, V., Pavithra, C. L. P., Kashyap, S., Singh, D. K., Luqman, S., Peshwe, D. R. and Srivastav, A. K. 2019. Graphene/chitosan-functionalized Iron Oxide Nanoparticles for Biomedical Applications. Journal of Materials Research. 34(20): 3389-3399. https://doi.org/10.1557/jmr.2019.267.

El-kharrag, R., Abdel Halim, S. S., Amin, A. and Greish, Y. E. 2018. Synthesis and Characterization of Chitosan-coated Magnetite Nanoparticles using a Modified Wet Method for Drug Delivery Applications. International Journal of Polymeric Materials and Polymeric Biomaterials. 68(1-3): 73-82. https://doi.org/10.1080/00914037.2018.1525725.

Magdziarz, A. and Werle, S. 2014. Analysis of the Combustion and Pyrolysis of Dried Sewage Sludge by TGA and MS. Waste Management. 34(1): 174-179. https://doi.org/10.1016/j.wasman.2013.10.033.

Xiaohua, W. and Jiancheng, J. 2012. Effect of Heating Rate on the Municipal Sewage Sludge Pyrolysis Character. Energy Procedia. 14: 1648-1652. https://doi.org/10.1016/j.egypro.2011.12.1146.

Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O. and Ejiogu, I. K. 2018. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. Journal of Toxicology. 2568038. https://doi.org/10.1155/2018/2568038.

Prayogo, W., Siregar, J. P., Soewondo, P., Nasution, Z., Hanami, Z. A., Ikhwali, M. F., Estim, A. and Suryawan, I. W. K. 2023. The Investigation on Mineral Wool Performance as a Potential Filter to Remove TSS in Cikapayang River, East Jawa, Indonesia. Environment and Natural Resources Journal. 21(1): 9-18.

Rytwo, G., Lavi, R., Rytwo, Y., Monchase, H., Dultz, S. and König, T. N. 2013. Clarification of Olive Mill and Winery Wastewater by Means of Clay–polymer Nanocomposites. Science of The Total Environment. 442: 134-142.

Downloads

Published

2024-01-16

How to Cite

Jumadi, J., Kamari, A., Abdul Rahim, N., Yusof, N., Sutapa, I. W., & Sunardi, S. (2024). FERRIHYDRITE-CHITOSAN NANOCOMPOSITE AS A RECYCLABLE FLOCCULANT FOR PALM OIL MILL EFFLUENT. Jurnal Teknologi, 86(2), 169–182. https://doi.org/10.11113/jurnalteknologi.v86.20187

Issue

Section

Science and Engineering