GELLAN GUM- AND PECTIN-MAGNETIC GRAPHENE OXIDE NANOCARRIERS LOADED WITH CINNAMALDEHYDE FOR MOSQUITO LARVAE CONTROL

Authors

  • Siew Tin Susana Wong Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia https://orcid.org/0009-0009-3349-3132
  • Azlan Kamari Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia https://orcid.org/0000-0002-3167-0619
  • Siti Najiah Mohd Yusoff Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia https://orcid.org/0000-0002-7343-0461
  • Mohd Zobir Hussein Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
  • Hidayatulfathi Othman School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia https://orcid.org/0000-0002-1430-3438
  • Suzaliza Mustafar Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia https://orcid.org/0000-0002-0658-5076
  • Adulsman Sukkaew Faculty of Science Technology and Agriculture, Yala Rajabhat University, 133 Thesaban 3, Sateng, Muang, Yala, 95000, Thailand https://orcid.org/0000-0002-5087-0157
  • Is Fatimah Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Jl. Kaliurang Km 14, Yogyakarta 55584, Indonesia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.20213

Keywords:

Aedes aegypti; gam gellan, pektin, nanopembawa magnetic, sinamaldehid

Abstract

Magnetic nanoparticles have evolved over the last few decades as nanocarriers in drug delivery systems for hydrophobic drugs. Here, novel gellan gum magnetic graphene oxide (GG-GO-Fe3O4) and pectin magnetic graphene oxide (PEC-GO-Fe3O4) nanocomposites were prepared to carry cinnamaldehyde to control Aedes aegypti larvae. Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and scanning transmission electron microscopy (STEM) were employed to investigate the physicochemical characteristics of the nanocomposites. Entrapment efficiencies and loading capacities of nanocomposites on cinnamaldehyde were examined using ultraviolet-visible analysis. The successful cinnamaldehyde loading was confirmed by C-C and C-O stretches in the FTIR spectra. Results of in vitro release study showed the capabilities of GG-GO-Fe3O4 as a drug carrier system, extending the cinnamaldehyde release period for 36 h, and the release profiles for both nanocomposites fit the Korsmeyer-Peppas kinetic model with correlation coefficient (R2) values of over 0.9809. The cinnamaldehyde-loaded GG-GO-Fe3O4 nanocomposites induced 68% mortality after 72 h of exposure, with LC50 values ranging from 2.0488 and 15.9121 mg/L. The conjugation of GO-Fe3O4 with biopolymers improved the water solubility of cinnamaldehyde by 36.41 to 62.83 times vs. free cinnamaldehyde in water (1.42 mg/mL). Overall, these results are beneficial for researchers dealing with mosquito control and prevention.

References

World Health Organization (WHO). 2021, October 14. Zika Virus Disease-India. https://www.who.int/emergencies/ disease-outbreak- news/item/zika-virus-disease-india.

World Health Organization (WHO). 2022, January 10. Dengue and Severe Dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.

World Health Organization (WHO): Western Pacific Region. 2023, March 30. Dengue Situation Update 668. https://www.who.int/westernpacific/emergencies/surveillance/dengue.

European Centre for Disease Prevention and Control (ECDC). 2023, March 17. Dengue Worldwide Overview. https://www.ecdc.europa.eu/en/dengue-monthly.

Ahmad, R., Suzilah, I., Najdah, W. M. A. W., Topek, O., Mustafakamal, I. and Lee, H. L. 2018. Factors Determining Dengue Outbreak in Malaysia. PLOS One. 13: e0193326.

Doi: https://doi.org/10.1371/journal.pone.0193326.

World Health Organization (WHO). 2013. Larval Source Management: A Supplementary Measure for Malaria Vector Control: An Operational Manual. https://apps.who.int/iris/bitstream/handle/10665/85379/9789241 505604_eng.pdf.

Cheng, S. S., Huang, C. G., Chen, Y. J., Yu, J. J., Chen, W. J. and Chang, S. T. 2009. Chemical Compositions and Larvicidal Activities of Leaf Essential Oils from Two Eucalyptus Species. Bioresource Technology. 100(1): 452-456.

Doi: https://doi.org/10.1016/j.biortech.2008.02.038.

Wong, S. T. S., Kamari, A., Jaafar, A., Hussien, M., Othman, H., Abdullah, H., Yusof, N. and Hashim, N. 2020. Longer Mosquito Control Using a Sodium Alginate-Chitosan Nanocarrier for Cinnamaldehyde in Larvicide Formulations. Environmental Chemistry Letters. 18: 1345-1351.

Doi: http://dx.doi.org/10.1007/s10311-020-00993-z.

Hussien, N. A., Işiklan, N and Türk, M. 2018. Pectin-Conjugated Magnetic Graphene Oxide Nanohybrid as A Novel Drug Carrier for Paclitaxel Delivery. Artificial Cells, Nanomedicine, and Biotechnology. 46(1): 264-273.

Doi: https://doi.org/10.1080/21691401.2017.1421211.

Wang, L., Lai, S-Y., Li, C-Z., Yu, H-P., Venkatesan, P. and Lai, P-S. 2022. D-Alpha-Tocopheryl Poly(ethylene Glycol 1000) Succinate-Coated Manganese-Zinc Ferrite Nanomaterials for a Dual-Mode Magnetic Resonance Imaging Contrast Agent and Hyperthermia Treatments. Pharmaceutics. 14(5): 1000.

Doi: https://doi.org/10.3390/pharmaceutics14051000.

Guo, J., Giusti, M. M. and Kalentunç, G. 2018. Encapsulation of Purple Corn and Blueberry Extracts in Alginate-Pectin Hydrogel Particles: Impact of Processing and Storage Parameters on Encapsulation Efficiency. Food Research International. 107: 414-422.

Doi: https://doi.org/10.1371/journal.pone.0112975

Ritger, P. L. and Peppas, N. A. 1987. Simple Equation for Description of Solute Release Ii. Fickian and Anomalous Release from Swellable Devices. Journal of Controlled Release. 5(1): 37-42.

Doi: https://doi.org/10.1016/0168-3659(87)90035-6.

Finney, D. J. 1952. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve. Cambridge: Cambridge University Press.

Ganguly, M. and Pramanik, D. 2017. Pectin Coated Iron Oxide Nanocomposite - A Vehicle for Controlled Release of Curcumin. International Journal of Biology and Biomedical Engineering. 11: 143-160.

Stuart, B. 2021. Analytical Techniques in Forensic Science. In Infrared Spectroscopy. New Jersey: John Wiley & Sons Ltd. 145-160.

Kumari, K. and Ramakrishnan, V. 2023. Fourier Transform Infrared (FTIR) Spectroscopy. In: Ramakrishnan, V. (eds). Biophysical Characterization of Functional Peptides. New York: Springer Protocols. 51-54.

Doi: https://doi.org/10.1007/978-1-0716-3405-9_7.

Balachandramohan, J., Anandan, S. and Sivasankar, Y. 2017. A Simple Approach for the Sonochemical Synthesis of Fe3O4-guargum Nanocomposite and Its Catalytic Reduction of p-nitroaniline. Ultrasonic Sonochemistry. 40(A): 1-10.

Doi: https://doi.org/10.1016/j.ultsonch.2017.06.012.

Zhu, W., Wu, J., Guo, X., Sun, X., Li, Q., Wang, J. and Chen, L. 2020. Development and Physicochemical Characterization of Chitosan Hydrochloride/Sulfobutyl Ether-β-Cyclodextrin Nanoparticles for Cinnamaldehyde Entrapment. Journal of Food Biochemistry. 44(6): e13197.

Doi: https://doi.org/10.1111/jfbc.13197.

Shahin, L., Zhang, L., Mohnen, D., Urbanowicz, B. R. 2023. Insights into Pectin O-Acetylation in the Plant Cell Wall: Structure, Synthesis, and Modification. The Cell Surface. 9: 100099.

Doi: https://doi.org/10.1016%2Fj.tcsw.2023.100099.

Ghibaudo, F., Gerbino, E., Copello, G.J., Dall’Orto, V. V. and Gómez-Zavaglia, A. 2019. Pectin-decorated Magnetite Nanoparticles as Both Iron Delivery Systems and Protective Matrices for Probiotic Bacteria. Colloids and Surfaces B: Biointerfaces. 180: 193-201.

Doi: https://doi.org/10.1016/j.colsurfb.2019.04.049.

Ngenefeme, F. J., Eko, N. J., Mbom, Y. D., Tantoh, N. D. and Rui, K. W. M. A. 2013. One Pot Green Synthesis and Characterisation of Iron Oxide-Pectin Hybrid Nanocomposite. Open Journal of Composite Materials. 3(2): 30-37.

Doi: http://dx.doi.org/10.4236/ojcm.2013.32005.

Işiklan, N. and Polat, S. 2020. Synthesis and Characterization of Thermo/pH-Sensitive Pectin-Graft-Poly (Dimethylaminoethyl Methacrylate) Coated Magnetic Nanoparticles. International Journal of Biological Macromolecules. 164: 4499-4515.

Doi: https://doi.org/10.1016/j.ijbiomac.2020.09.002.

Ebadi, M., Zain, A. R. M., Aziz, T. H. T. A., Mohammadi, H., Lee, C. A. T. H. and Yusop, M. R. 2023. Formulation and Characterization of Fe3O4@PEG Nanoparticles Loaded Sorafenib; Molecular Studies and Evaluation of Cytotoxicity in Liver Cancer Cell Lines. Polymers. 15(4): 971.

Doi: https://doi.org/10.3390/polym15040971.

Odularu, A. T. 2018. Metal Nanoparticles: Thermal Decomposition, Biomedicinal Applications to Cancer Treatment, and Future Perspectives. Bioinorganic Chemistry and Applications. 2018: 9354708.

Doi: https://doi.org/10.1155/2018/9354708.

Trivedi, V. 2019. Chemical Bonding for JEE Main & Advanced, NEET. 2nd edition. New Delhi: Disha Publication.

Ali, H. 2016. Reaction Mechanism in Organic Chemistry. New Delhi: S. Chand and Company Limited.

Ding, Y., Shen, S. Z., Sun, H., Sun, K., Liu, F., Qi, Y. and Yan, J. 2015. Design and Construction of Polymerized-Chitosan Coated Fe3O4 Magnetic Nanoparticles and Its Application for Hydrophobic Drug Delivery. Materials Science and Engineering: C. 48: 487-498.

Doi: https://doi.org/10.1016/j.msec.2014.12.036.

Hardiansyah, A., Yang, M.C., Liu, T. Y., Kuo, C. Y., Huang, L. Y. and Chan, T. Y. 2017. Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release. Nanoscale Research Letters. 12(1): 355.

Doi: https://doi.org/10.1186/s11671-017-2119-4.

Muhoza, B., Xia, S., Cai, J., Zhang, X., Duhoranimana, E. and Su, J. 2019. Gelatin and Pectin Complex Coacervates as Carriers for Cinnamaldehyde: Effect of Pectin Esterification Degree on Coacervate Formation, and Enhanced Thermal Stability. Food Hydrocolloids. 87: 712-722.

Doi: https://doi.org/10.1016/j.foodhyd.2018.08.051.

Ji, M., Sun, X., Guo, X., Zhu, W., Wu, J., Chen, L., Wang, J., Chen, M., Cheng, C. and Zhang, Q. 2019. Green Synthesis, Characterization and In Vitro Release of Cinnamaldehyde/Sodium Alginate/Chitosan Nanoparticles. Food Hydrocolloids. 90: 515-522.

Doi: https://doi.org/10.1016/j.foodhyd.2018.12.027.

Supramaniam, J., Adnan, R., Kaus, N. H. M. and Bushra, R. 2018. Magnetic Nanocellulose Alginate Hydrogel Beads as Potential Drug Delivery System. International Journal of Biological Macromolecules. 118(A): 640-648.

Doi: https://doi.org/10.1016/j.ijbiomac.2018.06.043.

Bernasconi, R., Pizzetti, F., Rosseti, A., Perugini, R., Nova, A., Levi, M. and Rossi, F. 2021. Effect of Different Physical Cross-Linkers on Drug Release from Hydrogel Layers Coated on Magnetically Steerable 3D-Printed Microdevices. Technologies. 9(2): 43.

Doi: https://doi.org/10.3390/technologies9020043.

Das, S., Thomas, S and Das, P. P. 2023. Novel Platforms for Drug Delivery Applications. Cambridge: Woodhead Publishing (Elsevier Ltd).

Doi: https://doi.org/10.1016/C2020-0-04022-3.

Varga, N., Turcsányi, Á., Hornok, V. and Csapó, E. 2019. Vitamin E-Loaded PLA- and PLGA-Based Core-Shell Nanoparticles: Synthesis, Structure Optimization and Controlled Drug Release. Pharmaceutics. 11(7): 0357.

Doi: https://doi.org/10.3390/pharmaceutics11070357.

Barkai-Golan, R. and Follett, P. A. 2017. Phytosanitary Irradiation of Fresh Horticultural Commodities for Market Access. Irradiation for Quality Improvement, Microbial Safety and Phytosanitation of Fresh Produce. London: Elsevier Ltd. 171-190.

Thavara, U., Tawatsin, A., Kong-Ngamsuk, W. and Mulla, M. S. 2004. Efficacy and Longevity of a New Formulation of Temephos Larvicide Tested in Village-Scale Trials Against Larval Aedes aegypti In Water-Storage Containers. Journal of the American Mosquito Control Association. 20(2): 176-182.

Vasantha-Srinivasan, P., Senthil-Nathan, S., Ponsankar, A., Thanigaivel, A., Edwin, E., Selin-Rani, S., Chellappandian, M., Pradeepa, V., Lija-Escaline, J., Kalaivani, K., Hunter, W. B., Duraipandiyan, V. and Al-Dhabi, N. A. 2017. Comparative Analysis of Mosquito (Diptera: Culicidae: Aedes aegypti Liston) Responses to the Insecticide Temephos And Plant Derived Essential Oil Derived From Piper betle L. Ecotoxicology and Environmental Safety. 139: 439-446.

Doi: https://doi.org/10.1016/j.ecoenv.2017.01.026.

Multyano, K. C., Yamanaka, A. and Ngadino Konishi, E. 2012. Resistance of Aedes aegypti (L.) Larvae to Temephos in Surabaya, Indonesia. The Southeast Asian Journal of Tropical Medicine and Public Health. 43(1): 29-33.

Wan-Norafikah, O., Aliah-Diyanah, S., Atiqah-Izzah, Z., Chen C. D., Sofian-Azirun, M., Lailatul-Nadhirah, A., Ibahim, M. J. 2023. Assessing the Bioefficacy of a Commercial Temephos Formulation (Temebate®) for Controlling Aedes albopictus Larvae in Different Land Use Localities in Malaysia. Experimental Parasitology. 254: 108627.

Doi: https://doi.org/10.1016/j.exppara.2023.108627.

Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., del Pilar Rodriguez-Torres, M., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S. and Shin, H. S. 2018. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. Journal of Nanobiotechnology. 16: 71.

Doi: https://doi.org/10.1186/s12951-018-0392-8.

Downloads

Published

2024-01-16

Issue

Section

Science and Engineering

How to Cite

GELLAN GUM- AND PECTIN-MAGNETIC GRAPHENE OXIDE NANOCARRIERS LOADED WITH CINNAMALDEHYDE FOR MOSQUITO LARVAE CONTROL. (2024). Jurnal Teknologi (Sciences & Engineering), 86(2), 135-147. https://doi.org/10.11113/jurnalteknologi.v86.20213