DEVELOPMENT OF A CORRELATION MODEL FOR TORSIONAL SHEAR MODULUS PROPERTIES BETWEEN STRUCTURAL SIZE SPECIMENS BASED ON EN 384:2016 AND SMALL CLEAR SPECIMENS (MS544: PART 2)

Authors

  • Muhammad Bazli Faliq Mohd Puaad UiTM Cawangan Johor, Kampus Pasir Gudang, Jalan Purnama, Bandar Seri Alam, 81750 Masai, Johor Darul Takzim, Malaysia
  • Zakiah Ahmad Pengajian Kejuruteraan Awam, Kolej Pengajian Kejuruteraan, Universiti Teknologi Mara 40450 Shah Alam, Selangor, Malaysia
  • Norshariza Mohamad Bhkari Institute for Infrastructure Engineering and Sustainable Management (IIESM), Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Mohd Johan Mohamed Ibrahim UiTM Cawangan Johor, Kampus Pasir Gudang, Jalan Purnama, Bandar Seri Alam, 81750 Masai, Johor Darul Takzim, Malaysia
  • Narita Noh UiTM Cawangan Johor, Kampus Pasir Gudang, Jalan Purnama, Bandar Seri Alam, 81750 Masai, Johor Darul Takzim, Malaysia
  • Shahrul Nizam Mohammad UiTM Cawangan Johor, Kampus Pasir Gudang, Jalan Purnama, Bandar Seri Alam, 81750 Masai, Johor Darul Takzim, Malaysia
  • Herda Balqis Ismail UiTM Cawangan Johor, Kampus Pasir Gudang, Jalan Purnama, Bandar Seri Alam, 81750 Masai, Johor Darul Takzim, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v86.20819

Keywords:

Shear modulus, torsion testing, structural dimension, small defect-free samples, tropical hardwood timber

Abstract

In timber design, the shear modulus of beams is crucial for ensuring torsional stability and minimizing vibrational issues. Traditionally, the ratio of modulus of elasticity (E) to shear modulus (G) is assumed to be 16:1. However, bending tests often combine flexural and shear stresses, making it difficult to assess pure shear properties. The British Standard BS EN 408:2012 now recommends the torsion test as the preferred method for determining the shear modulus of structural-size timber and timber composites. This method has received limited attention in Malaysia. This study investigates the torsional shear modulus of Malaysian tropical timber species across different strength groups (SG), including Balau (SG1), Kempas (SG2), Kelat (SG3), Kapur (SG4), Resak (SG4), Keruing (SG5), Mengkulang (SG5), Light Red Meranti (SG6), and Geronggang (SG7). Torsion tests were conducted in line with BS EN 408, and the results were compared with modulus of elasticity values from MS554: Part 2. The findings showed that the E to G ratio for these species ranged from 17:1 to 29:1, with an average of 21:1—exceeding the conventional 16:1 ratio. This indicates that torsional shear modulus must be experimentally tested rather than inferred from the traditional ratio.

References

British Standards Institution. 2010. BS EN 408: 2010. Timber structures - structural timber and glued laminated timber - Determination of some physical and mechanical properties perpendicular to the grain. London: BSI.

Green, D. W., Winandy., Kretshmann, D. E. 1999. Mechanical Properties of Wood. Chapter 4 Wood-as an Engineering Material. Forest Product Laboratory, Madison Wisconsin.

Schlotzhauer, P., Nelis, P. A., Bollmus, S., Gellerich, A., Militz, H., Seim, W. 2015. Effect of Size and Geometry on Strength Values and MOE of Selected Hardwood Species. Wood Material Science & Engineering. 1-9.

Yang, N., Zhang, L. 2018. Investigation of Elastic Constants and Ultimate Strengths of Korean Pine from Compression and Tension Tests. Journal of Wood Science. 64(2): 85-96.

Khokhar, A. M. 2011. The Evaluation of Shear Properties of Timber Beams Using Torsion Test Method. Doctor of Philosophy Thesis, Edinburgh Napier University Edinburgh, Scotland, United Kingdom.

Ahmed Mohamed, A., Deng, Y., Zhang, H., Wong, S.H. F., Uheida, K., Zhang, Y.X., Mei‑Chun Zhu, M-C., Lehmann, M., Quan, Y. 2021. Photogrammetric Evaluation of Shear Modulus of Glulam Timber Using Torsion Test Method and Dual Stereo Vision System. European Journal of Wood and Wood Products. 79: 1209-1223.

Divos, F., Tanaka, T., Nagao, H., Kato, H. 1998. Determination of Shear Modulus on Sonstruction Size Timber. Wood Science and Technology. 32(06): 393-402.

Chui Y. H. 2002. Application of the Ribbed-Plate Theory of Predict Vibrational Serviceability of Timber Floor Systems. The Proceedings of 7th World Conference on Timber Engineering WCTE. 4: 87-93.

Hindman D., Manbeck H. B., Janowiak J. J. 2005. Torsional Rigidity of Rectangular Wood Composite Materials. Wood and Fiber Science. 37(2): 283-291.

Ukyo, S., Ido, H., Nagao, H., Kato, H. 2010. Simultaneous Determination of Shear Strength and Shear Modulus in Glued-Laminated Timber Using A Full-Scale Shear Block Specimen. Journal of Wood Science. 56(3): 262-266.

Piotr Bilko, P., Skoratko, A., Rutkiewicz, A., Małyszko, L. 2021. Determination of the Shear Modulus of Pine Wood with the Arcan Test and Digital Image Correlation. Materials. 14(2): 468.

Keenen, F. J. 1974. Shear Strength of Wood Beams. Forest Products Journal. 24(9): 63-70.

Puaad, M. B. F. M. 2013. Bending and Compressive Properties of Malaysian Timber in Structural Size. Master of Science Thesis. Faculty of Civil Engineering. Universiti Teknologi Mara, Shah Alam, Selangor. Malaysia.

Malaysian Standard. 2017. MS 544 Part 2: 2017 - Code of Practice for Structural Use of Timber. Department of Standard, Malaysia.

British Standards Institution. 1995. BS EN408:1995. Timber Structures - Structural Timber and Glued Laminated Timber - Determination of Some Physical and Mechanical Properties Perpendicular to the Grain. London: BSI.

Ahmad, Z., Bon, Y. C., Wahab, E. S. A. 2003. Tensile Strength Properties of Tropical Hardwoods in Structural Size Testing. International Journal of Basic & Applied Sciences IJBAS-IJENS. 10(3): 1-6.

Sheikh, S., Ahmad, Y. 2015. Flexural Timber Design to Eurocode 5 and the Malaysian Timber Code MS 544: 2001. Malaysian Journal of Civil Engineering. 2(Special Issue 1): 207-223.

Puaad, M. B. F. M., Ahmad, Z., Talip, A. R. A., Salleh, M. Z. M., Mohammad, S. N. 2020. Torsional Shear Strength Properties of Malaysian Tropical Timber in Structural Size. Jurnal Teknologi. 82(5): 1-10).

Ido, H., Nagao, H., Kato., H. 2007. Comparison between Compression Strength Perpendicular to The Grain and Shear Strength Parallel to The Grain of Western Hemlock [tsuga heterophylla] Lumber. Bulletin of the Forestry and Forest Products.

Ahmad, Z. San, H. P., Md Tahir, P. 2013. Laminated Veneer Lumber Made from Tropical Forest Trees (Mechanical Properties). UiTM Press. UiTM Shah Alam, Malaysia.

Mohamed, A. 2023. Standard Test Methods for Elastic and Shear Properties. In Zhang, J (Ed.). Current Applications of Engineered Wood. IntechOpen.

British Standard. 2004. BS EN 1995-1-1:2004, Eurocode 5 - Design of Timber Structures-Part 1-1: General Common Rules and Rules for Buildings. London: BSI.

Foschi, R. O. 1982. Structural Analysis of Wood Floor Systems. Journal of the Structural Division. 108(7): 1557–1574.

Harrison, K. S. 2006. Comparison of Shear Modulus Test Methods. MSc Thesis. Blacksburg, VA, USA.

Malaysian Standard. 2003. MS 1714:2003- Specification for Visual Strength Grading of Tropical Hardwood Timber, Department of Standard. Malaysia.

British Standard. 2002. BS 5268 - Part 2:2002- Structural use of timber: Part 2: Code of Practice for Permissible Stress Design, Materials and Workmanship.

Chu, Y. P., Ho, K. S., Midon, M. S., Malik, A. R. A. 1997. Timber Design Handbook. FRIM, Malaysia. Kepong

European Standard. 2003. EN384:2003 - Structural Timber-determination of Characteristic Values of Mechanical Properties and Density. European Committee for Standardization, Brussels, Belgium.

European Standard. 2016. EN14358:2016 - Timber Structures — Calculation and Verification of Characteristic Values.

European Standard. 2009. EN338:2009 - Timber Structures - Strength Classes. European Committee for Standardization, Brussels, Belgium.

Gupta, R., Heck, L. R., Miller, T. H. 2002. Experimental Evaluation of the Torsion Test for Determining Shear Strength of Structural Lumber. Journal of Testing and Evaluation. 30(4): 283-290.

Bodig, J. and Jayne, B. A. 1982. Mechanics of Wood and Wood Composites. Van Nostrand Reinhold. 712.

Za’ba, N. I. L. 2018. Tensile Strength Class System for Malaysian Hardwoods According to European Standards EN 384 and EN 408. Doctor of Philosophy Thesis. Faculty of Civil Engineering. Universiti Teknologi Mara, Shah Alam, Selangor. Malaysia.

Azmi, A. 2019. Tensile Strength Class System for Malaysian Hardwoods According to European Standards EN 384 and EN 408. Doctor of Philosophy Thesis. Faculty of Civil Engineering. Universiti Teknologi Mara, Shah Alam, Selangor. Malaysia.

Baharin, A. 2020. Development of Characteristic Value of Bending Strength Properties for Malaysia Tropical Hardwood Timber in Structural size In Accordance with Eurocode 5. Doctor of Philosophy Thesis. Faculty of Civil Engineering. Universiti Teknologi Mara, Shah Alam, Selangor. Malaysia.

Downloads

Published

2024-09-17

Issue

Section

Science and Engineering

How to Cite

DEVELOPMENT OF A CORRELATION MODEL FOR TORSIONAL SHEAR MODULUS PROPERTIES BETWEEN STRUCTURAL SIZE SPECIMENS BASED ON EN 384:2016 AND SMALL CLEAR SPECIMENS (MS544: PART 2). (2024). Jurnal Teknologi (Sciences & Engineering), 86(6), 39-48. https://doi.org/10.11113/jurnalteknologi.v86.20819